POLLEN MORPHOLOGY AND TAXONOMY OF THE GENUS NEPETA SECT. PSILONEPETA (LABIATAE) IN IRAN

D. Azizian, Z. Jamzad & F. Serpooshan

Based on the SEM studies, the pollen morphology of 8 species of the genus Nepeta L. Sect.Psilonepeta native to Iran is described and compared. Taxonomic value of pollen morphology is discussed.

Differences in size and ornamentation of pollen and other conclusions from morphological and anatomical data, suggest that N. denudata should be transferred to Sect. Demndata supporting Budanstsev’s treatment.

Dina Azizian and Fariba Serpooshan, Department of Biology, Faculty of Science, Shahid Beheshti University, Even Tehran, Iran. -Ziba Jamzad, Research Institute of Forests and Rangelands, P.O. Box 13185-116, Tehran, Iran.

Key words. Labiatae, Nepeta, Pollen, Taxonomy, Iran.

انتشار 8 گونه بوشی ایران از جنس Nepeta L. بخش بوشی ناتوان در استفاده با جنس Psilonepeta سلیم خواهد شد. نتایج بدست آمده امکان پذیری مورفولوژی و میکروسکوپی این گونه نشان داشت که به نظر می‌رسد ناتوانی ندارد نکات ثابت گردد که به بخشی از جنس دیگر ناتوانی را در ناتوانی ندارد. نتایج کار Budanstsev مطالبت دارد منتقل شود.
Introduction
Previous studies on pollen of Labiatae have mainly involved the use of the light microscope only. Nabli (1976) used both Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) to investigate the surface structure and exine ultra-structure of pollen of various selected genera of the family. Erdtman (1952) summarized pollen morphology of 100 species and 50 genera of the Labiatae. He regarded the family as stenopalynous, that is, showing little variation in pollen morphology. Later, Wunderlich (1967) published an extensive survey of Labiatae pollen morphology, including many genera whose pollen had not previously been described. Her results strongly support Erdtman's (1945) proposed delimitation of the Labiatae into two subfamilies; Lamioideae, binucleate with three colpi and Nepetoideae, trinucleate with six colpi. Characters from seed structure also support this primary subdivision of the family; the tricolpate group has seeds with a small amount of endosperm and the hexacolpate group has seeds with no endosperm.

Most light microscopic examinations have concentrated on general shape and measurements and numbers of colpi, rather than details of surface ornamentation, which can be seen most clearly with the SEM. However in various works notably by Rudall (1980), Azizian & Moore (1982), Hauain & Heywood (1982) and Trude & Morton (1992), pollen structure in many of genera and species of Labiatae is described and illustrated using SEM, but very few groups of genera in Nepetoideae are considered by SEM. Recently Harley (1992) studied the pollen morphology of subtribe Ociminae (Nepetoideae). The results showed the potential value of pollen characters both in taxonomic revision and in the understanding of relationships and evolution within the Labiatae. On the other hand, Jamzad & al. (2000) described exine morphology of the annual species of Nepeta, although this study showed some variation in surface ornamentation, but had rather limited taxonomic application in the group.

Since there has been no comprehensive study of pollen morphology in SW Asian taxa of the genus Nepeta. The present work considered pollen morphology of 8 Iranian and endemic species of Nepeta, belonging to Sect. Psilonepeta to evaluate the exine ornamentation as a taxonomic character.

This paper is part of a project undertaken by one of the authors (F. Serpooshan) for a M.Sc degree in Shahid Beheshti University.

Materials and Methods
Pollen material was obtained from the herbarium specimens of the Research Institute of Forests and Rangelands (TARI), Iran. For Scanning Electron Microscopy (SEM) observation, the pollen dusted onto SEM stubs and coated with platinum using the JEOL Cambridge 35 SEM. The measurements are based on SEM data.

A list of materials used in this study, including collection number, origin and the location of voucher specimens is given in table I.

Results
The results of this palynological study are presented in table 2. Pollen grains of all species examined in sect. Psilonepeta of the genus Nepeta can be characterized as follows: monadic, isopolar, prolate or elliptic (P/E = 1.34-1.79), almost circular in polar view, colpate with six equal sized and equally spaced colpi (Hexacolpate). The average size of pollen grains ranges from 29.18 - 46.93 μm in polar axis and 16.28 - 32.85 μm in equatorial axis, N.
Table 1. Materials used for pollen morphology of the genus *Nepeta*.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Collecting data</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. laxiflora Benth.</td>
<td>Fars: Bamu Protected Region, Cheshmeh Fil. Wendelbo & Foroughi 17644.</td>
</tr>
<tr>
<td></td>
<td>Mazandaran: Chalus road, after Kandavan tunnel, Mozaffarian & Nowroozi 33905.</td>
</tr>
</tbody>
</table>

denudata has the smallest pollen grain and it is distinct from the others in this group. (Table 2, Figs. 1-15). The tectum is perforate, bireticate, consisting of a primary network of coarse tectal ridges (muri), surrounding spaces (lumina) containing few to many perforation (puncta), such as *N. oxyodonta* with few puncta per lumen (3-6) (Figs. 5,6, table 2, or with (12-15) puncta per lumen in *N. sessilifolia* (Fig. 15). Variation in surface sculpturing, the shape of lumina and the number of perforation within each lumen appear to represent a continuous range in which there is no clear distinction between them. The lumina are rounded-polygonal, with (7-11) or (12-15) puncta in most of the species examined, but more or less elongated in *N. depauperata* (Figs. 7-8) and angular polygonal in *N. sessilifolia* (Figs. 14, 15). Most of the species examined are more or less similar in shape and mean size except *N. denudata* which is smaller than other species, Polar axis (18.6-) 29.18 (-37.8) \(\mu \text{m} \), equatorial axis (11.7-) 16.28 (-23.28) \(\mu \text{m} \), the shape of pollen is elliptic to sub spheroidal with fine muri (Figs 10, 11).

Discussion

Bentham (1848), described Section *Psilonepeta* with three following species; *N. depauperata*, *N. laxiflora* and *N. oxyodonta*. The most important morphological characteristic of the species in this section is erect calyx throat with a ring of hairs inside, subequal teeth and exerted corolla. Boissier (1879) considered two groups in the section; group one includes the species with erect calyx throat and equal teeth which includes the species mentioned by Bentham for the section, and the other with oblique calyx throat and unequal teeth which includes *N. denudata* Benth. It lacks the hairy ring, but is covered with scattered hairs inside the tube and was placed in Sect. *Macronepeta* by Bentham. Rechinger (1982) described two new species considered *N. denudata* with the other previously described species in Sect. *Psilonpepta*. Reviewing the three mentioned works reveals the differences in morphology between *N. denudata* and other considered species of the section in calyx character.

The pollen morphology of the studied species as recorded for the *Lamiaceae* shows minor differences either in size or exine sculpturing but a distinct difference in pollen size is noticed in *N. denudata* which has the smallest pollen grain in the group, it also differs in lumen shape which is elongated. Differences in anatomical structures i.e. petiole and leaf anatomy (Serpooshan 1999) as well as
the mentioned morphological differences, agrees
the consideration of it in a separate section; Sect.
Demudatae as was suggested by Budantsev (1993),
but the idea of including some of the species of
Sect. Capituliferae (Benth.) Pojark. (the Iranian
species; i.e. N. cephalotes Boiss., N. prostrata
Benth.) in this section is not approved, because of
insufficient data.

Acknowledgements
We would like to acknowledge the curator of
the herbarium of Research Institute of Forests
and Rangelands for permission to remove
pollen from herbarium specimens, and Ministry
of Jahad-e Sazandegi for financial support of
the project.

We are also grateful to Dr. David Cutler
and his colleagues in Jodrell Laboratory (SEM
section) at the Royal Botanic Gardens, Kew for
permission to take, the SEM pictures of pollen
grains in this paper.

References
Azizian, D. & Moore, D. M. 1982: Morphological
and palynological studies in Phlomis L., Eremontachys
Bunge and Paraphlomis Prain

Benthem, G. 1848: Nepeta in De Candolle
Prodromus systematis naturalis regni vegetabilis.
Boissier, E. 1879: Nepeta in Flora
Budantsev, A. L. 1993: A synopsis of the
genus Nepeta (Lamiaceae).
Botanicheski Zhurnal, 78(1): 93-99
and Lobova, T. A. 1997: Fruit
morphology, anatomy and taxonomy of
Bot. 54(2): 183 - 216.
Erdtman, G. 1945: Pollen morphology and
plant taxonomy IV. Labiatae, Verbenaceae
and Avicenniaceae. -Svensk Bot. Tidskr,
- 1952: Pollen morphology and plant taxonomy.
Angiosperms. -Almqvist & Wiksell,
Stockholm.
- 1969: Handbook of palynology, -
Munksguard, Copenhagen.
Harley, M. M. 1992: The potential value of
pollen morphology as an additional
taxonomic character in subtribe Ociminae,
Nepetoideae. (Labiatae). in R. M. Harley
and T. Reynolds (Editors). Advances in
Labiatae Science pp. 125-138. -Royal
Botanic Gardens, Kew.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Polar length (P)</th>
<th>Equatorial width (E)</th>
<th>P/E</th>
<th>Colpus length</th>
<th>Lumen shape</th>
<th>No of perforation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Mean</td>
<td>Max</td>
<td>Min</td>
<td>Mean</td>
<td>Max</td>
</tr>
<tr>
<td>N. dschuparensis</td>
<td>(42.9)</td>
<td>46.93</td>
<td>(54.3)</td>
<td>(26.7)</td>
<td>32.85</td>
<td>(38.8)</td>
</tr>
<tr>
<td>N. depauperata</td>
<td>(31.6)</td>
<td>41.11</td>
<td>(46.8)</td>
<td>(16.8)</td>
<td>28.41</td>
<td>(37.5)</td>
</tr>
<tr>
<td>N. laxiflora</td>
<td>(36.3)</td>
<td>44.2</td>
<td>(47.8)</td>
<td>(21.6)</td>
<td>32.78</td>
<td>(43.4)</td>
</tr>
<tr>
<td>N. sessilitolia</td>
<td>(32.1)</td>
<td>39.08</td>
<td>(42.2)</td>
<td>(26.6)</td>
<td>28.91</td>
<td>(30.9)</td>
</tr>
<tr>
<td>N. scrophularioides</td>
<td>(39.3)</td>
<td>44.1</td>
<td>(47.8)</td>
<td>(27.7)</td>
<td>31.02</td>
<td>(33)</td>
</tr>
<tr>
<td>N. oxyodonta</td>
<td>(29.3)</td>
<td>39.82</td>
<td>(48.5)</td>
<td>(18.5)</td>
<td>28.5</td>
<td>(34.3)</td>
</tr>
<tr>
<td>N. demudata</td>
<td>(18.6)</td>
<td>29.18</td>
<td>(37.8)</td>
<td>(11.7)</td>
<td>16.28</td>
<td>(23)</td>
</tr>
</tbody>
</table>
Azizian, Jamzad & Serpooshan

