اثرات سطوح مختلف انرژی قابل منابعی بر عملکرد و صفات کیفی
تخم‌مرغ در مرغ‌های تخم‌گذار با جیره‌های بر پایه درت و گنبد

چکیده:
آزمایش‌های حاضر به منظور ارزیابی اثرات نوع جیره و سطح انرژی قابل منابعی بر عملکرد و صفات کیفی تخم‌مرغ در مرغ‌های تخم‌گذار انجام گرفت. آزمایش با آراپش فاکتوریل (2×3) در قالب طرح کامل تصادفی شامل جیره‌های بر پایه درت و گنبد و سطح انرژی قابل منابعی (2800، 2900 و 3000 کیلوکالری بر کیلوگرم) با تعداد 288 قطعه مرغ تخم‌گذار سویه‌های (W36) در 6 تا 12 هفته عمر مرغ در هر واحد آزمایشی به مدت 12 هفته انجام گرفت. بهترین عملکرد و صفات کیفی تخم‌مرغ با جیره‌های بر پایه نرم و کیلوکالری انرژی قابل منابعی موجب افزایش هزینه تولید شد (0/50>P). جیره‌های بر پایه گنبد و 2900 کیلوکالری انرژی قابل منابعی، اثرات سوئی بر عملکرد و صفات کیفی تخم‌مرغ داشت (0/00<P). درخصوص نوع جیره و سطح انرژی، بهترین عملکرد و صفات کیفی تخم‌مرغ با جیره‌های بر پایه نرم و کیلوکالری انرژی قابل منابعی موجب افزایش هزینه تولید شد (0/50>P). به طور کلی نتیجه‌گیری می‌شود که در مرغ‌های تخم‌گذار در سن 33 تا 46 هفته استفاده از جیره‌های بر پایه نرم با کیلوکالری انرژی قابل منابعی در مقایسه با جیره‌های بر پایه گنبد و کیلوکالری بر کیلوگرم انرژی قابل منابعی، موجب بهبود عملکرد و صفات کیفی تخم‌مرغ می‌گردد.

واژه‌های کلیدی: انرژی قابل منابعی، صفات کیفی تخم‌مرغ، عملکرد، مرغ تخم‌گذار
The effects of different levels of metabolizable energy on performance and egg traits of laying hens with corn and wheat based diets

By: Ali nobakht*

*Associate professor, Department of Animal Science, Islamic Azad University, Maragheh Branch, E-mail: anobakht20@yahoo.com

This experiment was conducted to evaluate the effects of different levels of metabolizable energy (ME) on performance and egg traits of laying hens with corn and wheat based diets. Experiment carried out as (2×3) factorial arrangement included corn and wheat based diets and three levels of ME (2800, 2900 and 3000 Kcal/kg) with 288 Hi-line (W36) laying hens from 35-58 weeks of age in 6 treatments and 4 replicates (12 birds per replicate) in a completely randomized design. The best performance and egg traits were obtained with diets on the base of corn and 2900 Kcal/kg ME (P<0.05). Using 3000 Kcal/kg ME increased the amount of feed cost (P<0.05). Diets on the base of wheat and 2800 Kcal/kg ME had adverse effects on performance and egg traits (P<0.05). In interaction between diets kind and ME level, the best performance and egg traits were observed in diets on the base of corn and 2900 Kcal/kg ME (P<0.05). The overall results indicated that in laying hens from 35-58 weeks of age, using corn based diets with 2900 Kcal/kg metabolizable energy in comparison with wheat based diet and 2800 and 3000Kcal/kg metabolizable energy improve their performance and egg trait.

Key words: Egg quality traits, Metabolizable energy, Performance, Laying hens.

در مقابل، مصرف خوراک گروهی که از جبره حاوی 7/88 کیلوکالری بر کیلوگرم دریافت می‌کردند، آماربد کمتر از جبره حاوی 27/89 کیلوکالری بر کیلوگرم بود (هارمز و هکاران، 2001). محققین دیگری نشان داده که محدوده نمونه سطح انرژی دریافت توسط مرغ‌ها موجب کاهش تولید تخم‌مرغ می‌گردد (NRC، 1994). در آزمایش دیگری که در خصوص نتایج اثر سطوح مختلف انرژی قابل تولید بر اساس سطح

1 User friendly feed formulation done again
جدول 1- ترکیبات جیره‌های غذایی پایه (درصد)

<table>
<thead>
<tr>
<th>ماده خوراکی (٪)</th>
<th>سطوح انرژی (بر پایه ذرت)</th>
<th>سطوح انرژی (بر پایه گندم)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3000</td>
<td>2800</td>
</tr>
<tr>
<td></td>
<td>2800</td>
<td>3000</td>
</tr>
<tr>
<td>درت</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>گندم</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>کم‌تاجه‌سازی سویا</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>روغن سویا</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>چوده صدف</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>پودر استخوان</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>نمک طعام</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>مکمل معدنی</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>مکمل ویتامین‌یاً</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>دی‌ال- مینوئین</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>ال- لیزرین هی‌دروکراید</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

ترکیبات شیمیایی محاسبه

قیمت هر کیلو گرم (تومان)

<table>
<thead>
<tr>
<th>بزرگ‌ترین خام</th>
<th>کلسیم</th>
<th>فسفر در دسترس</th>
<th>سدیم</th>
<th>لیزین</th>
<th>مینوئین</th>
<th>سیستین</th>
<th>تریتوتان</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0/15</td>
<td>0/15</td>
<td></td>
<td></td>
<td>0/15</td>
<td>0/15</td>
<td>0/15</td>
</tr>
<tr>
<td>0/33</td>
<td>0/33</td>
<td>0/33</td>
<td></td>
<td></td>
<td>0/33</td>
<td>0/33</td>
<td>0/33</td>
</tr>
<tr>
<td>0/21</td>
<td>0/21</td>
<td>0/21</td>
<td></td>
<td></td>
<td>0/21</td>
<td>0/21</td>
<td>0/21</td>
</tr>
<tr>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td></td>
<td></td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
</tr>
<tr>
<td>0/09</td>
<td>0/09</td>
<td>0/09</td>
<td></td>
<td></td>
<td>0/09</td>
<td>0/09</td>
<td>0/09</td>
</tr>
<tr>
<td>0/07</td>
<td>0/07</td>
<td>0/07</td>
<td></td>
<td></td>
<td>0/07</td>
<td>0/07</td>
<td>0/07</td>
</tr>
<tr>
<td>0/05</td>
<td>0/05</td>
<td>0/05</td>
<td></td>
<td></td>
<td>0/05</td>
<td>0/05</td>
<td>0/05</td>
</tr>
<tr>
<td>0/04</td>
<td>0/04</td>
<td>0/04</td>
<td></td>
<td></td>
<td>0/04</td>
<td>0/04</td>
<td>0/04</td>
</tr>
<tr>
<td>0/03</td>
<td>0/03</td>
<td>0/03</td>
<td></td>
<td></td>
<td>0/03</td>
<td>0/03</td>
<td>0/03</td>
</tr>
</tbody>
</table>

ترکیب مکمل معدنی استفاده شده به ارای هر کیلو گرم شام: 1mg کلسیم، 5mg فسفر، 2mg سدیم، 0.25mg لیزین، 0.6mg مینوئین، 0.3mg سیستین، 0.1mg تریتوتان.
سطح فاکتور A = اثر 1 آمیز سطح عامل A، \(A_j \) = اثر \(j \) آمیز سطح عامل A، \(AB_{ij} \) = اثر \(i \) آمیز سطح عامل A و \(j \) آمیز سطح عامل B و \(e_{ijk} \) = خطای آزمایشی با میانگین صفر و واریانس می‌باشد.

نتایج

نتایج حاصل از نوع جبر، سطح اثر برای هر نمونه آزمایشی بر علائم بی‌‌مصرفی تخم‌گذاری موجود در جدول 2 آمده است. با استفاده از جبر، برای گروه‌های مختلف انرژی قابل متونیسم به شکل فاکتور A، و سطح اثرات عامل B، تا تأثیر قرار داده شده است.

(2015) از جبرهای با پایه ثابت در مقایسه با جبرهای با پایه گردیده بهبود عملکرد تخم‌گذاری مزیت شده به طوری که پیشنهاد مربوط به وزن تخم‌مرغ، توجه تخم‌مرغ تولیدی دارد، لذا تخم‌مرغ و بهترین ضریب تبیزی غذایی با استفاده از جبرهای با پایه ثابت مشاهده شدند. جبرهای نظیری شده با پایه گردیده و در نتایج عملکرد تخم‌گذاری مزیت خوراکی و هزینه خوراکی به ازای هر کیلوگرم تخم‌مرغ تولیدی نشان دادند. استفاده از سطح اثری برای قابل متونیسم در نظیری جبرهای غذایی در مقایسه با سطح اثری قابل متونیسم بالای اثرات متغیر بر عملکرد تخم‌گذاری مزیت داشت. مزیت بالاتری عملکرد تخم‌گذاری، بهترین ضریب تبیزی غذایی و کمترین هزینه خرید به ازای هر کیلوگرم تخم‌مرغ تولیدی را با 300 کیلوکالری بر کیلوگرم اثری قابل متونیسم نشان دادند.

پیشنهاد وزن تخم‌مرغ‌های تولیدی با جیره حاصل 4000 کیلوکالری بر کیلوگرم اثری قابل متونیسم به دست آمده بود با این سطح از اثری، هزینه خوراک به ازای هر کیلوگرم تخم‌مرغ تولیدی افزایش یافت. در نتیجه این مربوط به نوع جیره و سطح انرژی قابل متونیسم. پیشنهاد وزن تخم‌مرغ با استفاده از جیره بر پایه حاصل 3000 کیلوکالری بر کیلوگرم اثری قابل متونیسم مشاهده شد. به غیر از وزن تخم‌مرغ، اثرات نوع جیره و سطح انرژی قابل متونیسم بر عملکرد تخم‌گذاری و هزینه خوراک به ازای هر کیلوگرم تخم‌مرغ تولیدی معنی‌دار نبود.

در طول آزمایش‌های، شرایط محیطی برای هر گروه‌های آزمایشی بسیار بود. برای گروه‌های شرایط محیطی مشابه 14 ساعت در طول دوره آزمایش بود. درج حراز محیط کنترل شده و تمامی مرغ به صورت آزاد به خوراک و آب آشامیدنی دسترسی داشتند. واکنش‌ها و بی‌پناهی به غذا نشانی به صورت معمول در منطقه و با توجه دام‌دوستان سنندج عامل گردید. خوراک مصرفی و مقدار تولید به صورت انتخابی و با توجه روز مربوط به اندازه گیری تخم‌مرغ با انتخابی روزانه محسوب گردیده و با توجه به دستورات تولید و وزن تخم‌مرغ تولید، تخم‌مرغ محسوب می‌شده و با توجه به مقدار خوراک و ضرب تبیزی غذایی تعیین گردید.

برای محسوب‌های خوراک به ازای هر کیلوگرم تخم‌مرغ تولیدی، قسمت اول آن‌ها هر کیلوگرم از خوراک در گروه‌های مختلف آزمایشی (به تومان) به ضریب تبیزی غذایی ضرب گردیده و نتیجه حاصله از جی‌پی‌دی و برای مقدار این محصول (Haugh unit) در محلول آب نمک تعیین شد. (فرخوی و همکاران، 1994). میزان تخم‌مرغ‌ها شکسته شده و واحد ها از آن‌ها اندازه‌گیری شد. برای اندازه‌گیری ارتفاع (Haugh unit) زده از متغ‌های ارتفاع سنج استاندارد مدل (300) استفاده شد. پوشت تخم‌مرغ‌ها بعد از نتیجه محیطات داخلی، به مدت 48 ساعت در دمای اکتشاف نگهداری شده و بعد از نگهداری وزن آن‌ها با استفاده از نانو ماشین گروه‌ی استفاده شد و مدفوع حاصله از دوره‌ها به عنوان میانگین گروه‌ی استفاده در تجزیه دارد استفاده قرار گرفت.

SAS در پایان، داده‌های حاصله با استفاده از نرم‌افزار آماری SAS (مورد تجزیه و تحلیل قرار گرفتند و برای مقایسه فاصله بین میانگین‌ها از آزمون کوک‌ولیزراده و مقدّم 1373 استفاده شد. مدل رایانه‌ای آن که به صورت زیر می‌باشد:

\[
Y_{ijk} = \mu + A_i + B_j + (AB)_{ij} + e_{ijk}
\]

که در فرمول فوق:

\(Y_{ij} \) آمیز مشاهده مربوط به \(i \) آمیز سطح فاکتور \(A \) و \(j \) آمیز سطح فاکتور \(B \).
جدول ۲- اثر جیره‌های آزمایشی بر عملکرد مرغ‌های تخم‌گذار

<table>
<thead>
<tr>
<th>نام جیره</th>
<th>وزن تخم‌مرغ (گرم)</th>
<th>تخم‌گذاری (گرم/وزنمرغ)</th>
<th>بیشترین خروکاکی به‌ایزی</th>
<th>ضریب تبدیل غذایی</th>
<th>تخم‌گذاری (گرم/وزنمرغ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>گل‌سیر</td>
<td>117/000</td>
<td>70/250</td>
<td>2/44^b</td>
<td>0/30</td>
<td>44/093</td>
</tr>
<tr>
<td>هشت‌میل</td>
<td>15/085</td>
<td>2/20</td>
<td>2/58^a</td>
<td>0/02</td>
<td>2/20</td>
</tr>
<tr>
<td>میل‌والی</td>
<td>15/82</td>
<td>2/09</td>
<td>2/09</td>
<td>0/48</td>
<td>4/093</td>
</tr>
</tbody>
</table>

SEM: ۰۰۰۱۰۱/۰۰۰۱
P Value: ۰۰۰۱/۰۰۰۱

سطح انرژی (Kcal/kg)

<table>
<thead>
<tr>
<th>جیره‌پایه</th>
<th>سطح انرژی</th>
<th>SEM</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>گل‌سیر</td>
<td>۵/۵۸۰۱۰۵</td>
<td>۰۱۰۵</td>
<td>۰۰۰۱۰۱</td>
</tr>
<tr>
<td>هشت‌میل</td>
<td>۵/۵۸۰۱۰۵</td>
<td>۰۵۸۰۱۰۵</td>
<td>۰۰۰۱۰۱</td>
</tr>
<tr>
<td>میل‌والی</td>
<td>۵/۵۸۰۱۰۵</td>
<td>۰۵۸۰۱۰۵</td>
<td>۰۰۰۱۰۱</td>
</tr>
</tbody>
</table>

نتایج حاصل از نوع جیره، سطح انرژی قابل مناسب‌بوده و اثرات متفاوت نوع جیره و سطح انرژی بر عملکرد مرغ‌های تخم‌گذار در جدول ۲ خلاصه شده است. انتخاب انرژی بر پایه وزن و گل‌سیر، سطح مختلف انرژی قابل مناسب‌بوده و نیز جیره هشت‌میل و سطح انرژی قابل مناسب‌پذیری به صورت معنی‌دار داره‌اند، ولی عامل مرغ‌ها را تحت تأثیر قرار داد (P<۰۰۵). این انتخاب از جیره‌پایه در طریقی به جیره‌پایه بر پایه گل‌سیر مجهز افزایی شاخص رنگ زرد، وزن‌های پوسته، سفیده، زرد و واحد ها به جیره‌پایه در طریقی به جیره‌پایه بر پایه گل‌سیر مجهز افزایی شاخص رنگ زرد، وزن‌های پوسته، سفیده، زرد و واحد ها به دست آمد. اثر نوع جیره و سطح انرژی بر ضخامت پوسته تخم‌مرغ را معنی‌دار نپذیر (P<۰۰۵).
جدول ۳- اثر جیره‌های آزمایشی بر صفات کیفی تخمرغ

<table>
<thead>
<tr>
<th>تیمار</th>
<th>خیش رست</th>
<th>وزن یک دانه (گرم)</th>
<th>وزن سفیده (گرم)</th>
<th>وزن پسته (گرم)</th>
<th>رنگ زردگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>جیره یا به</td>
<td>۰/۳۸۰</td>
<td>۰/۳۷۶</td>
<td>۰/۱۴۸</td>
<td>۰/۹۲۶</td>
<td>۰/۲۴۷</td>
</tr>
<tr>
<td>SEM</td>
<td>۰/۰۵</td>
<td>۰/۰۴</td>
<td>۰/۰۵</td>
<td>۰/۰۷</td>
<td>۰/۰۴</td>
</tr>
<tr>
<td>P Value</td>
<td>۰/۰۱</td>
<td>۰/۰۲</td>
<td>۰/۰۳</td>
<td>۰/۰۲</td>
<td>۰/۰۱</td>
</tr>
<tr>
<td>جیره گندم</td>
<td>۰/۳۸۲</td>
<td>۰/۳۸۰</td>
<td>۰/۱۴۸</td>
<td>۰/۹۲۶</td>
<td>۰/۲۴۷</td>
</tr>
<tr>
<td>SEM</td>
<td>۰/۰۵</td>
<td>۰/۰۴</td>
<td>۰/۰۵</td>
<td>۰/۰۷</td>
<td>۰/۰۴</td>
</tr>
<tr>
<td>P Value</td>
<td>۰/۰۱</td>
<td>۰/۰۲</td>
<td>۰/۰۳</td>
<td>۰/۰۲</td>
<td>۰/۰۱</td>
</tr>
</tbody>
</table>

سطح انرژی (Kcal/kg) | ظرفیت دار

جیره یا به	۲۰۰۰	۲۱۰۰	۲۲۰۰	۲۳۰۰	۲۴۰۰
SEM	۰/۰۵	۰/۰۴	۰/۰۵	۰/۰۷	۰/۰۴
P Value	۰/۰۱	۰/۰۲	۰/۰۳	۰/۰۲	۰/۰۱

بحث

با توجه به نتایج جدول ۳ و ۴، استفاده از گندم در مقایسه با سرده در جیره‌های غلیظ‌درگ تخمرغ، اثرات سونی بر عملکرد و صفات کیفی تخمرغ داشته است. علی‌رغم عدم وجود تفاوت معنادار در مقادیر خوراک مصرفی با جیره‌های بر یا به گندم و در همین مورد در جیره‌های موجب افزایش وزن و درصد تخمرغ لوله‌ای شده است. از آنجا که توجه تخمرغ لوله‌ای از حاصل ضرب وزن تخمرغ در درصد لوله تخمرغ به دست می‌آید، لذا بالاترین مقادیر توجه تخمرغ لوله‌ای و بهترین ضرب
پی ساکاریذه هاگ نیشانهایی در دانه گندم با ایجاد چسبندگی در مواد گوارشی، موجب اخلاق در محض و جذب مواد غذایی و نیز تخمیر و تولید غاز، افزایش میکروبهای مضر و تجزیه اسيدهای آمیزه در روده شده و می‌توان بر عملکرد و صفات کنی تخمیر گه‌اس اثرات سوء داشته باشد (بوروزا، ۱۳۷۹) که کاهش عملکرد و افت کیفیت تخمیر‌گه‌اس تولیدی یا چرب‌های فرمله شده پر به گندم نیز احساس ناشی از این عواطف می‌باشد. تأثیر سوء گندم چربه در اثرات متخلخل سطح انرژی و نوع چربه نیز مشاهده شد و سطح انرژی بالا هنن توام در زمین بهبود عملکرد و صفات کنی تخمیر گه‌اس مؤثر باشد. تابعی مشاهده شد، به نتایج زراعت و هماننکان (۱۳۷۸) مطالب است به طوری که چاپگری گردید یک ذرت چربه با گندم و سورگوک مشکلاتی را بر عملکرد و صفات کنی تخمیر‌گه‌اس ایجاد می‌نماید، در حالی که با گزاره نوشته (۱۳۸۹) در خصوص چاپگری صد درصدی ذرت با گندم در جربه‌های تخم‌گذار و نویبی و هماننکان (۱۳۹۱) در رابطه با چاپگری صد در صد ذرت چربه جوجه‌های گوشی‌ب با گندم و جو به‌دن داشته اثرات سوء بر عملکرد این مطالب‌ها ندارد. نمایی‌سازی مشاهده شده، را می‌توان ناشی از نوع پرنده، سن، سطح تولید و بازکر چربه‌ها دانست.

اندیشکاری و افزایش چربی‌گه‌اس به باستفاده از ۳۰۰۰ کیلوگرمی بر یکی‌کاری جدیدی می‌تواند با استفاده از ۱۰ هزار کیلوگرم تسخیر‌گه‌اس قابلیت‌های در بهترین شده در این زمینه می‌باشد (گرویاس و هماننکان، ۱۹۹۹)، همچنین، (۱۳۸۵) نوشته و هماننکان (۱۳۸۸) افزایش وزن تخم‌گذار مشاهده شده با چربه حاوی نتره و ۱۰۰۰ کیلوگرامی بر یکی‌کاری قابلیت‌های تخم‌گذاری می‌توان با استفاده از یکی‌کاری این بخش‌های اسیدیوکسی‌های مهندنی ایجاد چرب دیگر افزایش اندازه تخمیر‌گه‌اس که در گرویاس و هماننکان (۱۹۹۹)، کاهش ضخامت پوسه تخمیر‌گه‌اس به جربه‌های حاوی ۲۰۰۰ و ۳۰۰۰ کیلوگرامی بر یکی افزایش قابلیت‌های تخم‌گذاری می‌توان با تخم‌گذاری می‌تواند با تخمیر‌گه‌اس به‌داشت که با افزایش بالاتری تخمیر‌گه‌اس می‌توان با افزایش بالاتری تخمیر‌گه‌اس می‌توان با در افزایش دو تخم‌گذاری، مقدار کلیسی که اختصاصی یافته به ازای هر تخمیر‌گه‌اس کاهش می‌یابد و با یک نگ‌سند تخمیر‌گه‌اس در مقایسه با تخمیر‌گه‌اس کوچک‌تر ضخامت پوسه کاهش می‌یابد. افزایش سطح چربی چربه با تخمیر گه‌اس در اثرات اکتشف در محض و جذب مواد غذایی و نیز تخمیر و تولید غاز، افزایش میکروبهای مضر و تجزیه اسیدهای آمیزه در روده شده و می‌توان بر عملکرد و صفات کنی تخمیر‌گه‌اس اثرات سوء داشته باشد (بوروزا، ۱۳۷۹) که کاهش عملکرد و افت کیفیت تخمیر‌گه‌اس تولیدی یا چرب‌های فرمله شده پر به گندم نیز احساس ناشی از این عواطف می‌باشد. تأثیر سوء گندم چربه در اثرات متخلخل سطح انرژی و نوع چربه نیز مشاهده شد و سطح انرژی بالا هنن توام در زمین بهبود عملکرد و صفات کنی تخمیر‌گه‌اس مؤثر باشد. تابعی مشاهده شد، به نتایج زراعت و هماننکان (۱۳۷۸) مطالب است به طوری که چاپگری گردید یک ذرت چربه با گندم و سورگوک مشکلاتی را بر عملکرد و صفات کنی تخمیر‌گه‌اس ایجاد می‌نماید، در حالی که با گزاره نوشته (۱۳۸۹) در خصوص چاپگری صد درصدی ذرت با گندم در جربه‌های تخم‌گذار و نویبی و هماننکان (۱۳۹۱) در رابطه با چاپگری صد در صد ذرت چربه جوجه‌های گوشی‌ب با گندم و جو به‌دن داشته اثرات سوء بر عملکرد این مطالب‌ها ندارد. نمایی‌سازی مشاهده شده، را می‌توان ناشی از نوع پرنده، سن، سطح تولید و بازکر چربه‌ها دانست.

اندیشکاری و افزایش چربی‌گه‌اس به باستفاده از ۳۰۰۰ کیلوگرامی بر یکی‌کاری جدیدی می‌تواند با استفاده از ۱۰ هزار کیلوگرم تسخیر‌گه‌اس قابلیت‌های در بهترین شده در این زمینه می‌باشد (گرویاس و هماننکان، ۱۹۹۹)، همچنین، (۱۳۸۵) نوشته و هماننکان (۱۳۸۸) افزایش وزن تخم‌گذار مشاهده شده با چربه حاوی نتره و ۱۰۰۰ کیلوگرامی بر یکی‌کاری قابلیت‌های تخم‌گذاری می‌توان با استفاده از یکی‌کاری این بخش‌های اسیدیوکسی‌های مهندنی ایجاد چرب دیگر افزایش اندازه تخمیر‌گه‌اس که در گرویاس و هماننکان (۱۹۹۹)، کاهش ضخامت پوسه تخمیر‌گه‌اس به جربه‌های حاوی ۲۰۰۰ و ۳۰۰۰ کیلوگرامی بر یکی افزایش قابلیت‌های تخم‌گذاری می‌توان با تخمیر‌گه‌اس به‌داشت که با افزایش بالاتری تخمیر‌گه‌اس می‌توان با تخمیر‌گه‌اس به‌داشت که با افزایش بالاتری تخمیر‌گه‌اس می‌توان با در افزایش دو تخم‌گذاری، مقدار کلیسی که اختصاصی یافته به ازای هر تخمیر‌گه‌اس می‌توان با افزایش بالاتری تخمیر‌گه‌اس می‌توان با در افزایش دو تخم‌گذاری، مقدار کلیسی که اختصاصی یافته به ازای هر تخمیر‌گه‌اس می‌توان با افزایش بالاتری تخمیر‌گه‌اس می‌توان با

