استفاده از تکنیک AFLP برای ارزیابی تنوع زنینی در کلزا (Brassica napus L.)

Study of Genetic Diversity in Canola (Brassica napus L.) Using AFLP Technique

مهدی رحیمی، بدرالدین ابراهیم سید طباطبایی، علی کیارس زاهدی بیضوی، سپر سید عدی‌الموسنی و محمدعلی ملوبی

دانشکده کشاورزی دانشگاه تهران و مرکز ملی مهندسی زنینی و تکنولوژی زیستی

تاریخ دریافت: ۸/۱۲/۱۳۹۶
تاریخ پذیرش: ۹/۴/۱۳۹۷

چکیده

به منظور ارزیابی تنوع زنینی و تعبیر روابط زنینی بین ارگان کلزا از تکنیک AFLP استفاده گردید. در AFLP کل ۲۱۴۵ باند با استفاده از ۳۰ آغازگر انتخابی حاصل شد که از این تعداد ۱۰۸ باند جنگ شکل بود. تشابه زنینی بین ارگان، با استفاده از ضریب جاکارد تعبیر گردید. دامنه تغییر تشابه زنینی بین ۲۸/۴۵ تا ۱/۰ و همچنین تجزیه به Complete Linkage می‌گردید. دندان‌گروه‌های حاصل از تجزیه خوش‌هایی با روش مولفه‌ها اصلی ارقام را از تکنیک AFLP کردند. نتایج تجزیه خوش‌هایی نشان داد که ارقام در چهار گروه قرار می‌گرفت. بر اساس این نتایج چنین استنباط شد که می‌توان از تکنیک AFLP به عنوان ابزار کارا و مؤثر در تعبیر روابط زنینی در بین ارگان کلزا استفاده کرد.

واژه‌های کلیدی: کلزا، تنوع زنینی، AFLP، تجزیه خوش‌هایی

مقدمه

در برنامه‌های بهبودیابی و حفظ ذخایر توأمی اطلاع از سطح تنوع زنینی از اهمیت خاصی برخوردار است. نشانگرهای متینی بر DNA مناسب‌ترین روش برآورده تنوع زنینی به شمار می‌روند (Odonouge et al., 1999). نشانگرهایی که سطح بالاتری از تنوع را نشان می‌دهند از کارایی بیشتر برخوردار می‌باشند. مقدمة

 bilder

(Amplified Fragment Length Polymorphism) (Simple Sequence Repeat) SSR و (Pulsed Field Gel Electrophoresis) AFLP (Maguire et al., 2002) برزش یافته از طریق واکنش

*فامین از بابلیان‌ها کارشناسی ارشد تدریس آزمایشگاه اولیه که بروز پایکوبی‌های داشته‌باشی دانشگاه تهران ارازه‌گردیده است. www.SID.ir
گونه‌های داتوره را تعیین نمودند. علاوه بر مطالعات فوق‌الزمانی و AFLP (Mace et al., 1999b; Maughan et al., 1996; Sharma et al., 1996; Hongtrakul et al., 1997; Hill et al., 1996; Paul et al., 1997; Russel et al., 1997; Zhu et al., 1998) و چندین استفاده (Chavarriaga-Aguirre et al., 1999) از این نتایج، نشان‌گرها (Zabeau and Vos, 1993) و ژنتیک‌های منحصر به فرد، تکنیک AFLP در بررسی تنوع ژنتیکی گروه متنوعی از موجودات از جمله میکروگیاهی‌ها، گیاهان و حیوانات به کار رفته است (Janssen et al., 1996; Karp et al., 1997; Lima et al., 2002). 79 رقم نشانگر سوم نشان‌گرها استفاده در بررسی نشانگر اصلی و چهار گونه دیگر را بررسی نموده و میزان تنوع ژنتیکی بین ارگان را با این تکنیک ارزیابی نمودند. سلیمانی و همکاران (2002) در تحقیق مورد سریع‌تر، ژن‌های ارگان و شجره آنها بررسی AFLP و شجره آنها بررسی کردند. آنها بی‌پایندی علمی فشار گذشته‌های هم‌ارگانی و پایه ارگانی در بین این ارگان و جسیده دارد. لومبارد و همکاران (Lombard et al., 2000) تعبیر نشانگرها را در شناسایی ارگان‌های کلکسیون کلزا AFLP بررسی نمودند و نتایج آنها با استفاده از مدل‌سازی فواصل ژنتیکی 27 توده از تکنیک AFLP به شرح زیر انجام شد:
<table>
<thead>
<tr>
<th>No. Culture</th>
<th>Origin</th>
<th>B = Plasmid number</th>
<th>F' = Plasmone Spored</th>
<th>E = End of Horizont</th>
<th>D' = Beginning of Horizont</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>0.2</td>
<td>12</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>0.3</td>
<td>13</td>
<td>21</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>0.4</td>
<td>14</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>0.5</td>
<td>15</td>
<td>23</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>0.6</td>
<td>16</td>
<td>24</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>0.7</td>
<td>17</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>0.8</td>
<td>18</td>
<td>26</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>17</td>
<td>0.9</td>
<td>19</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>1.0</td>
<td>20</td>
<td>28</td>
<td>21</td>
</tr>
</tbody>
</table>

Table 1. Morphological characteristics of cultivars used in the experiment.
الف- برند زنونمی DNA

DNA Digestion (زیراصuppen)

EcoRI و Tیم‌ریز گردیده. اجرا و اکتشاف 40 میکروئیتری برابر هر نمونه عبارت بود از: 4 میکروئیتر بایفر 10 برابر (پریس)

استاندارد 100 میلی‌میکروئیتر با pH 7 استاندارد مینی‌زمین 100 میلی‌میکروئیتر با استاندارد تیم‌ریز 5 و استاندارد (EcoRI) 5 واحد آنزیمی 100 میکروئیتر زنونمی و

آب متغیر این و اکتشاف در C در به مدت 3 ساعت صورت می‌گیرد.

(Selective Amplification) د- تکثیر انتخابی اجزای اکتشاف 10 میکروئیتری بایفر انتخابی به شرح زیر بود: 100 میکروئیتر زنونمی DNA (MseI و EcoRI)

مقداماتی شامل 96 درجه سانتی‌گراد (30 ثانیه)، 27 درجه سانتی‌گراد (30 ثانیه)، 3 درجه سانتی‌گراد (30 ثانیه) و آب متغیر این و اکتشاف در C در به مدت 3 ساعت صورت می‌گیرد.

(Pre Amplification) ج- تکثیر مقداماتی اجزای اکتشاف 25 میکروئیتری تکثیر مقداماتی عبارت بود از: 50 میکروئیتر از هر کدام (EcoRI) و 2/05 میکروئیتر بایفر 10 برابر (MseI)

مقداماتی 100 میلی‌میکروئیتر کلید تیم‌ریز مینی‌زمین میکروئیتر با pH 8 برابر (dNTPs)، 1 واحد آنزیمی

نتیجه‌ی تحقیقات "بهان و مولر" جلد 19، شماره 4، اسفند 1382
استفاده از تکنیک AFLP برای ارزیابی...

(۳۰۰ تانه‌ی) و ۲۷ درجه سانتی‌گراد (۳۰ تانه‌ی) بود که در هر چرخه، دمای اتصال به میزان یک درجه کاهش پیدا کرد. در طوری که درای اتصال چرخه‌ی پایانی به ۵۶ درجه رسید. بخش سوم ۲۳ درجه سانتی‌گراد (۳۰ تانه‌ی) و ۲۷ درجه سانتی‌گراد (۳۰ تانه‌ی) به یک ناحیه مصرفی بود. واکنش‌ها در ترموسابک Perkin-Elmer مدل ۸۰۰ ثابت گردید.

الف‌تکنیک...

(۱۹۹۴) Tassociation...
شکل 1 - تصویر یک انگشت نگار AFLP با استفاده از آغازگرهای E-ACA و E-GTA

Fig. 1. AFLP fingerprint using E-ACA and M-GT primers
شکل 2- دندوروگرام حاصل از تجزیه تشانگر در ارقام کلزا

Fig. 2. Dendrogram of AFLP marker
(1, 2, 3... cultivar numbers, see Table 1)

محاسبه تشابه بین افراد جلوگیری کند که این کار صورت گرفت (Powell et al., 1996) برای داشتن دیدگاه بهتر راجع به فواصل زنتیکی بین ارقام و همچنین برای مشاهده فواصل زنتیکی بین ارقام به صورت جدید بعدی، تجزیه به مختصات اصلی نیز مکمل با روش تجزیه خوشه‌ای انجام شد. مورد اطمینان از تغییرات با سه مولفه اصلی توجه به شد. نتایج تجزیه به مختصات اصلی نشان می‌دهد که آغازگرهای مورد آنالیز در این تحقیق، تا به ازبین از زنوم کلزا و مورد پوشش قرار داده و چرا که درصد بیشتری از تنوع بین ارقام به وسیله مولفه اصلی اول توجه کردیم است (محمودی، مذاکرات 1999a, b)
کاهی در امتیاز‌سنجی و حذف اعداد مصنوعی
(بندگی) که در اثر رؤیت اشتباه، تغییر شرایط
PCR هضم نخستین، کدوزت دهلیز و غیره به
صورت باند می‌شوند. در آنالیز منظور
گردید. زیرا عدم دقت در امتیاز‌سنجی و وجود
باندهای مصنوعی سبب می‌شود تا برآورد
روابط زنتیکی بین افراد نادرست باشد.
(Powell et al., 1996)

در مجموع چندین عامل، تخمین روابط
زنتیکی بین افراد را تحت تأثیر قرار می‌دهند که
عبارتند از (1) تعادل نشانگر مورض استفاده
(2) توزیع نشانگرها در زونوم (پیشین زنومی)
(3) یک سه‌تایی نشانگری که در پی واقع
زیرینای تنوع محاسبه شده می‌باشد. تعادل
نشانگر، وارانس تخمین تشابه را تحت تأثیر
قرار می‌دهد. سطح زنومی، تها در حضور لینکاز
نامتوازن، وارانس تخمین تشابه را نگیر می‌دهد.
اگر لینکاز نامتوازن وجود داشته باشد در این

بين ارقام، از ضریب تشابه جاکارد استفاده
گردید. ضریب تطبیق ساده از این لحاظ مناسب
نیست که در این ضریب، وجود و عدم وجود
باند، منظور شود. عدم وجود یک نشانگر
در دو گیاه می‌تواند به دلیل
AFLP موتاتسونهای کاملاً متفاوت (جذور، اضافه، جا
به جایی) باشد که نیاز به طور بکسان در نظر
گرفته شود. از طرف دیگر نیز یک قطعه
توالی از طی نیروی توان اطمینان بافت که دو
باندی که در یک موقعیت بکسان در دو زنومی
قرار گرفته‌اند، بکسان و یا به هم شیب هستند
از آنجا که
باندهای بکسان شکل فاقد اطلاعات می‌باشند، لذا
حذف شده‌اند. حذف این باندها و همچنین
باندهای نادر باعث کاهش میانگین تشابه در بین
ارقام گردید (Powell et al., 1996)

برای تفکیک صحیح ارقام و همچنین تخمین
درست میزان تشابه موجود بین هر دو رقم دقت

شکل 3 - پلات سه‌بعدی حاصل از داده‌های

Fig. 3. Three dimensional plots from AFLP data
(1, 2, 3 ... Cultivar numbers, see Table 1)
تصویر نشان‌گرهایی که به طور منظم در زنوم پخش شده‌اند، تخمین‌هایی نسبت به نشان‌گرهایی که به طور تصادفی در زنوم پخش شده‌اند، به وجود می‌آورند. در صورتی که در حالت لیکوک متعادل، توزیع نشان‌گرهای اهمیتی ندارد، تفاوت در مکانیزم‌های ایجاد تنواع در زنوم (مانند انواع موتاسیون) تخمین تشابه را تحت تأثیر قرار می‌دهند (Powell et al., 1996). مثل این، باند شده است که نشان‌گرهای میکروساینسی به دلیل سبب یک سایل سریع و داشتن خصوصیت تکرار-لغزش (مکانیسمی است که برای ایجاد اولویت بیشتر، بیشترین شده است)، نشان‌گرهای مناسبی برای تخمین تشابه برنجی استفاده نشان‌گرهای افراد هم‌سمپل مکر در مورد خوش‌آموزان بسیار نزدیک (Bowcock, 1994).

نتیجه‌گیری

نتیجه‌گیری از ورود AFLP به دلیل تکرار‌پذیری بالا و تولید تعداد زیادی بند در یک آزمون، یک تکرار‌پذیری بازی می‌داند. ابزار استفاده‌کننده در این مطالعه می‌باشد و همچنین کارایی یک‌پشتی در تعیین شدت مورد آزمون می‌باشد و همچنین کارایی یک‌پشتی در تعیین شدت مورد آزمون می‌باشد (Caetano-Anolles and Gresshoff, 1998). اما مهم‌ترین معیار در انتخاب نشان‌گرهای میزان اطلاعات حاصل، سادگی تعیین زنوتیپ، سادگی عمل و حسین که یک‌پشتی در تعیین شدت مورد آزمون می‌باشد (Caetano-Anolles and Gresshoff, 1998).

با توجه به این که AFLP نوع زئنیکی را در DNA سطح، یعنی منشاء تمام خصوصیات گیاه مورد ارزیابی قرار می‌دهد، لذا گروه‌بندی لاغر کردن در این می‌باشد و محیط‌های این تجربه به‌طور کلی بر اساس داده‌های حاصل از آن می‌باشد. مفیدتر از نظریه مهیا که بر اساس داده‌های مورفولوژیک باند زیرا در اندازه‌گیری صفات مورفولوژیک خطاهای بسیار بیشتر از روش AFLP آزمایش‌گاهی می‌باشد که در تکنیک AFLP
References


