بررسی تغییرات بیوماس و تراکم سیانوفیتی در فصول مختلف در حوضه جنوبی دریای خزر
آسه مخلوط و حسن نصرالله زاده ساروی

asieh_makhlough@yahoo.com

پنجم اکتوبر، پژوهشکده اکولوژی دریای خزر، ساری، بندر بیرجند

تاریخ دریافت: ۱۳۸۰-۰۷-۲۱
تاریخ پذیرش: ۱۳۸۱-۰۷-۲۰

چکیده

هدف از این مقاله بررسی تغییرات جمعیت و بیوماس سیانوفیتی با توجه به تغییرات فصلی (دما و بارندگی) در حوضه جنوبی دریای خزر بود. در این برسی از نواحی مختلف حوضه جنوبی دریای خزر در دوره مطابعی در سال‌های ۱۳۷۶ و ۱۳۷۸ تا ۱۳۷۹ مجموعاً ۳۲۳ نمونه از ۱۸ ایستگاه دریایی حداکثر عمق ۵ متر، جمع‌آوری گردید و سپس مورد آنالیز کمی و کیفی قرار گرفت. نتایج بعست آمده در سال‌های ۱۳۷۵-۱۳۷۹ نشان می‌دهد که از مجموع ۸۱۸۰ کونه نیتروفلوکسیون (۹ گونه (۱۱ درصد) متعلق به ۸ گونه سیانوفیتی بوده است. در فصول گرم (بهار و تابستان) حداکثر بیوماس و تراکم سیانوفیتی در منطقه گریزی بوده است. در میانگین طول‌جرز (۱۵۸×۱۵۸×۱۵۸ میلی‌متر) عدد در مترمکعب/۱۰۰×۱۰۰×۱۰۰ متر. در حالت که در فصول سرد (پاییز و زمستان) حداکثر میزان بیوماس و تراکم در منطقه شرقی مشاهده گردیده است (۱۰/۳۵ میلی‌متر گرم عدد در مترمکعب). حداکثر درجه حرارت در سال (۸۷) در منطقه غربی و جنوبی آن در منطقه شرقی و یا مرکزی بوده است. در سال‌های ۱۳۷۹-۱۳۸۰ از نتایج آلاین گونه نیتروفلوکسیون (۲۵ گونه (۱۵/۸ درصد) را سیانوفیتی تشکیل داده است. حداکثر بیوماس و تراکم در بهار و تابستان در منطقه گریزی بوده است (۸۸/۳ میلی‌متر گرم عدد در مترمکعب/۱۵/۸×۱۵/۸×۱۵/۸). در پاییز و زمستان حداکثر بیوماس و تراکم همانند سال ۱۳۷۵-۱۳۷۹ بوده است (۱۵/۸ میلی‌متر گرم عدد در مترمکعب/۱۵/۸×۱۵/۸×۱۵/۸). حداکثر درجه حرارت در منطقه شرقی بوده است. این بررسی نشان می‌دهد که بیشترین تراکم سیانوفیتی در تابستان است که می‌تواند مربوط به افزایش درجه حرارت و میزان رطوبت باشد. نتیجه‌بردست از آنالیز آماری میانگین بیوماس می‌دهد که بین فصول مختلف در سال‌های ۱۳۷۵-۱۳۷۹، تراکم و بیوماس سیانوفیتی اختلاف معنی‌داری نداشته است (P>0.05). نتایج در نواحی مختلف (غربی، شرقی و مرکزی) نیز مشابه فصول بوده است. در نتایج جمعیت سیانوفیتی بیشتر تحت تأثیر ترکیب خاصی از عوامل محیطی است تا ارتباط مستقیم بین عوامل محیطی (از تیل دما) و سیانوفیتی.

لطفاً تاکیدی: سیانوفیتی، تغییرات فصلی، بیوماس، تراکم، دریای خزر، ایران
مقامه

فیتوپلانکتون‌ها از عناصر اصلی و مهم محیط‌های آبی محسوب می‌شوند، زیرا در اولین حلقه از زنجیره غذایی اکوسیستم‌آبی جای دارند. آنها شامل چندین شاخه می‌باشند که یکی از آن‌ها سیانوفیتا (جلبک‌های سبز آبی) است. که قدمت آن‌ها به ۳ میلیون سال پیش می‌رسد. جلبک‌های سبز آبی از جنبه‌های مختلف نظر رشدی و غیررشدی آب‌دستی، توانایی تنیزوزن و ایجاد به عوامل اکولوژیک (منابع غذایی، شرایط، دما، pH) می‌توانند مورد بررسی قرار گیرند (Sze, 1986).

درجه حرارت یکی از عوامل اصلی محیط آبی است که تقریباً برکلی فل و انتقالات موجودات زنده مؤثر است. هر گونه از آبزیان قابلیت زندگی در محدوده حرارتی معینی را دارند، در نتیجه درجه حرارت هم نقش محدودکننده داشته و هم بنوان عامل اصلی مورد نیاز موجودات محسوب می‌گردد. اگر چه فیتوپلانکتون‌ها، پراکنده و انتشارشان در ارتباط با دمای آب پکنواخت نمی‌باشند (قاسم‌اف، 1994).

منطقه مورد مطالعه در این پژوهش، حوضه جنوبی دریای خزر (سواحل ایران) بوده که از نظر خصوصیات فیزیکی-شیمیایی و جغرافیایی به سه بخش شرقی، غربی و مرکزی قابل تقسیم است (کاتونین، 1376).

سیانوفیتا در کلیه مناطق دریای خزر پراکنده‌اند، اما بیشتر گونه‌های آنها در خزر شمالي زندگی می‌کنند (۶۰ گونه در خزر شمالی، ۱۰ گونه در خزر میانی و ۱۰ گونه در خزر جنوبی) و بیشترین تنوع آن در خزر شمالی در دوره تابستانی باید به مشاهده می‌شود (مانیسیس و فیلانوا، ۱۹۸۵) و همچنین طبق نظر قاسم‌اف و باقراف (۱۹۸۴) در خزر جنوبی از ۲۱۹ گونه فیتوپلانکتون، ۲۲ گونه (۱۰٪) درصد آن را سیانوفیتا تشکیل می‌دهند.

قسمت غربی خزر جنوبی (معلق به سواحل روسیه) بخصوص تا عمق ۵ متری از لحاظ وجود جلبک‌های غنی است (قاسم‌اف، ۱۹۸۷) که می‌تواند به عنوان گنبد آب‌شناسی از مواد بیولوژیکی پایداری که از طریق آباهای شمال غربی و چه از اعماق در اثر جابجایی آب‌های لاهی کنفی حاصل می‌شود (سلمانوف، ۱۹۸۷). از طرفی در قسمت شرقی در فصل زمستان رشد و نمو جلبک‌ها بیشتر از قسمت غربی است زیرا در جهت حرارت آب در ناحیه شرقی بالاتر است (قاسم‌اف، ۱۹۸۷).
هدف از این مطالعه بررسی روند تغییرات سیانوفیتا با توجه به تغییرات فصلی (دمایی) در حوضه جنوبی دریای خزر می‌باشد.

مواد و روش‌گزار
برای بررسی حوضه جنوبی دریای خزر (از آستارا تا بندرترکمن) تعداد 18 مقطع عمود بر ساحل (ترانسکت) در نظر گرفته شد که این 18 مقطع به سه ناحیه قابل تقسیم می‌باشد:
1- ناحیه غربی: از نیم خط 1 تا 7
2- ناحیه مرکزی: از نیم خط 8 تا 13
3- ناحیه شرقی: از نیم خط 14 تا 18

هر نیم خط در فاصله مطالعاتی سال 1375 شامل 4 استگاه با حداکثر عمق‌های 10، 40، 90 و 100 متر بوده است. ولی در مطالعه سال 1379-1380، 11 فاصله دارای سه استگاه با حداکثر عمق‌های 0، 5 و 10 متر بوده و این مقاله براساس داده‌های استگاه‌های دارای حداکثر عمق 10 متر نوشته شده است (شکل 1). نمونه‌برداری بصورت فضایی و اندازه‌گیری درجه حرارت بوسیله دماسنج برگردان زیبینی و آلمانی انجام شده است.

نمونه‌های پلانکتون بوسیله تور روتر جمع آوری شدند. برای تعیین بیوموس و فراوانی نیز از روش سنتروفوز استفاده شد. شده‌ها به ترتیب که 500 سی سی آب نمونه برداری شده‌ها را با فرمالین 6 درصد تثبیت نموده و در ظرف شیشه‌ای به آزمایشگاه منتقل شدند (سالمانوف، 1987; Sorina، 1978). در این روش نمونه‌ها به مدت 10 روز در تاریکی تگ‌گردی نگه‌داری گردیدند تا کامل‌ر رسوی نماید. سپس سیفون و سانتروفوز شدند و با میکروسکوپ با برگردانی 400 و X و 200 مورد شناسایی و شمارش قرار گرفتند (Vollenweider، 1974؛ Clesceri et al، 1976؛ Newell، 1977؛ Habit، 1976؛ Prescott، 1962؛ و Zibilska و همکاران، 1951) استفاده گردید. جهت آنالیز داده‌ها از SPSS و Excel 98 و Foxpro نرم‌افزار استفاده شد.
نتایج

بررسی فصلی سیانوفیتای در سال 1375 نشان می‌دهد که در بهار و تابستان حداکثر تراکم و بیوماس در منطقه غربی وجود دارد. در حالیکه حداکثر تراکم و بیوماس در فصل پاییز و زمستان به منطقه شرقی کشور شده است (جدول 1). بطورکلی در سال 1375 میزان انتشار سیانوفیتای پایین بوده و در بسیاری از نیم خطها اصلاً دیده نشد است (جدول 2). بیشترین تراکم و بیوماس بر پایه مربوط به فصول تابستان و بهار بوده است، بطوریکه مجموع تراکم در فصل تابستان به میزان ۷/۱۰۰۰۰۱ عدد در مترمکعب و مجموع بیوماس در بهار به میزان ۱/۳۱ میلی‌گرم در مترمکعب رسیده است (جدول 3). که در این فصول مجموع تراکم و بیوماس کل فیتوفیلاتکتون به ترتیب ۸/۱۰۰۰۱ عدد در مترمکعب و ۲/۸۹۲ میلی‌گرم در مترمکعب بوده است.

در پاییز تمامی گونه‌ها رشته‌ای بودند اما در سه فصل دیگر تنها نیمی از آنها رشد کرده بودند (نمودار ۱). حداقل درجه حرارت در همه فصول (جز پاییز) در منطقه غربی و حداکثر درجه حرارت در بخش شرقی و مرکزی بوده است (جدول ۱). تغییرات دمایی در نیم خطهای مختلف در سه فصل تابستان، پاییز و زمستان کمتر از ۴ درجه است در حالیکه در بهار بین تغییرات به ۷ درجه سانتی‌گراد می‌رسد.

جدول ۱: میانگین تراکم، بیوماس و درجه حرارت در فصول و نواحی مختلف حوضه جنوبی دریای خزر (سالهای ۱۳۷۸-۱۳۷۹ ۱۳۸۰)

<table>
<thead>
<tr>
<th>تراکم</th>
<th>پ، فصل</th>
<th>ترکم درجه حرارت</th>
<th>"میلیگرم" درجه حرارت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲/۱۰۰۰۱</td>
<td>۲/۱۰۰۰۱</td>
<td>۲/۱۰۰۰۱</td>
<td>۲/۱۰۰۰۱</td>
<td>۲/۱۰۰۰۱</td>
<td>۲/۱۰۰۰۱</td>
<td>۲/۱۰۰۰۱</td>
<td>۲/۱۰۰۰۱</td>
</tr>
<tr>
<td>۱/۱۰۰۰۱</td>
<td>۱/۱۰۰۰۱</td>
<td>۱/۱۰۰۰۱</td>
<td>۱/۱۰۰۰۱</td>
<td>۱/۱۰۰۰۱</td>
<td>۱/۱۰۰۰۱</td>
<td>۱/۱۰۰۰۱</td>
<td>۱/۱۰۰۰۱</td>
</tr>
<tr>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
</tr>
<tr>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
</tr>
<tr>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
</tr>
<tr>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
</tr>
<tr>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
<td>۰/۱۰۰۰۱</td>
</tr>
</tbody>
</table>
جدول ۲: چگونگی انتشار سیانوفیتا در فصول و مقاطع مختلف در حوضه جنوبی دریای خزر (سالهای ۱۳۷۵، ۱۳۷۶، ۱۳۷۷، ۱۳۷۸)

| سال | صفر | یک | دو | سه | چهار | پنج | شش | هفت | اشکاب | بهار | تابستان | تابستان | پاییز | زمستان | ۷۵ | ۷۶ | ۷۷ | ۷۸ | ۷۹ | ۸۰ | ۸۱ | ۸۲ |
|-----|-----|----|----|----|------|-----|-----|-----|-------|-----|----------|----------|------|--------|-----|----|----|----|----|-----|-----|----|----|
| ۱۳۷۵| | | | | | | | | | ۷۵ | ۷۶ | ۷۷ | ۷۸ | | | | | | | | | |
| ۱۳۷۶| | | | | | | | | | ۷۵ | ۷۶ | ۷۷ | ۷۸ | | | | | | | | | |
| ۱۳۷۷| | | | | | | | | | ۷۵ | ۷۶ | ۷۷ | ۷۸ | | | | | | | | | |
| ۱۳۷۸| | | | | | | | | | ۷۵ | ۷۶ | ۷۷ | ۷۸ | | | | | | | | | |

توضیح: برداری صورت گرفته.
نمودار 1: تعداد کل گونه‌های سیانوفیتا در فصول مختلف حوضه جنوبی دریای خزر (سالهای 1375 و 1378 تا 1379)

جدول 2: جمع کل تراکم و بیوماس سیانوفیتا در فصول مختلف در حوضه جنوبی دریای خزر (سالهای 1375 و 1378 - 1379)

<table>
<thead>
<tr>
<th>دما</th>
<th>بیوماس (میلی گرم در مترمکعب)</th>
<th>تراکم (تعداد در مترمکعب)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19/9</td>
<td>31/1</td>
<td>8/19x10^5</td>
</tr>
<tr>
<td>20/4</td>
<td>8/64</td>
<td>1/15x10^5</td>
</tr>
<tr>
<td>27/4</td>
<td>10/9</td>
<td>1/16x10^5</td>
</tr>
<tr>
<td>27/6</td>
<td>32/26</td>
<td>1/23x10^5</td>
</tr>
<tr>
<td>18/8</td>
<td>5</td>
<td>1/18x10^5</td>
</tr>
<tr>
<td>16/3</td>
<td>322</td>
<td>1/13x10^5</td>
</tr>
<tr>
<td>11/7</td>
<td>17/1</td>
<td>1/30x10^5</td>
</tr>
<tr>
<td>9/9</td>
<td>287/12</td>
<td>1/19x10^5</td>
</tr>
</tbody>
</table>

در سال 1379 حداکثر تراکم و بیوماس سیانوفیتا در بهار در منطقه مرکزی و در پاییز و زمستان در منطقه شرقی مشاهده شده است و در تابستان علاوه بر شرق در غرب نیز دیده شده است.
پیشترین انتشار سیانوفیتی در سال‌های 1378-1379 در 78 نفر و کل فیتوپلانکتون بیش از 96 نفر بوده است. نتایج در جدول 2 آمده است.

از موارد دیگر درجه حرازت در فصول در منطقه غربی و حداکثر درجه حرارت نیز غالب‌تر در منطقه شرق اسلامی است.

نمودار 2: درصد سیانوفیت‌های رشته‌ای در فصول مختلف حوضه جنوبی دریای خزر (سال‌های 1378 و 1379)
جدول ۲: مقایسه حضور گونه‌های مختلف سیانوفیتا در فصول مختلف حوزه جنوبی دریای خزر

<table>
<thead>
<tr>
<th>استان</th>
<th>بهار</th>
<th>تابستان</th>
<th>پاییز</th>
<th>زمستان</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V8</td>
<td>V6</td>
<td>V8</td>
<td>V6</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Cyanophyta

- Aphanothecae sp.
- Microcystis sp.
- Microcystis aeruginosa
- Microcystis pulvorea
- Anabaenopsis cunningtonii
- Anabaenopsis nadsonii
- Anabaenopsis raciborski
- Anabaenopsis Arnoldii
- Anabaenopsis sp.
- Oscillatoria limosa
- Oscillatoria geminata
- Oscillatoria sp.
- Oscillatoria chalybea
- Anabaena spiroides
- Anabaena tenuis
- Anabaena bergii
- Anabaena aphanizomenides
- Anabaena subcylinariae
- Anabaena sp.
- Anabaena kisselevii
- Merismopedia punctata
- Merismopedia minima
- Spirulina laxissima
- Gloeopsis sp.
- Aphanizominon elabens
- Aphanizominon issatschenko
- Tolipotrix sp.

رشته‌ای

غیررشته‌ای
بحث
سیانوفیتا در جات حشرات بالا (بیش از ۲۰ درجه) را جهت رشد خود ترجیح می‌دهند (Tang et al., 1997). لذا در بهار و تابستان که متوسط درجه حرارت مناسب جهت رشد ندارند، در نتیجه در این فصول نشان دهنده است که محلول دریاگیری دیگر می‌باشد. به این ترتیب می‌توان گفت که افزایش تراکم و بیوماس آنها در این دو فصل در منطقه گریزی می‌تواند به علت ورود آب‌های رودخانه‌ای غنی از مواد غذایی باشد (سلمان‌نژاد، 1987). در حالی که در سرمای زمستان، درجه حرارت نشان بارزتری می‌یابد به طوریکه نقطه حداکثر تراکم و بیوماس از منطقه گریزی به منطقه شرقی که دارای درجه حرارت بالاتری نسبت به غرب است کشیده می‌شوند. در فصل پاییز که شرایط دیگری از قبل جرخ‌های عمومی آب و کاهش علفخواری زنوبالانکتیونها (1955) مطرح می‌گردد، زمینه‌های مناسبی جهت انتشار بیشتر سیانوفیتا فراهم می‌گردد.
مقاومت میانگین‌های تراکم و بیوماس در فصول مختلف (درجه حرارت‌های مختلف) با استفاده از آزمون کروکوسکال والپی نشان می‌دهد که نتایج اختلاف معنی‌دار نداشته است (P>0/05). همچنین مقایسه میانگین بیوماس در سه منطقه غربی، مرکزی و شرقی حوضه جنوبی دریاچه خزر نشان می‌دهد که اختلاف معنی‌دار بوده است (P<0/05). در همین برسی آماری نشان داده شده است که

نمودار 3: تعداد کل گونه‌های فیتوپلانکتون در فصول مختلف حوضه جنوبی دریای خزر (سال‌های ۱۳۷۸ و ۱۳۷۹)
پیوماس سیانوفیتا در سال‌های ۱۳۷۹-۱۳۸۱، به مقدار در دو برابر نسبت به سال‌های ۱۳۷۵-۱۳۷۶ افزایش یافته است (P<0.01). در صورتی که تراکم آن تقریباً به برابر افزایش نشان داده است (P<0.07). بنا براین به احتمال قوی در سال‌های ۱۳۷۹-۱۳۸۱ علائم و تراکم افزایش یافته و گونه‌های بیشتری می‌خورند. چنانکه بررسی اطلاعات نیز بیانگر آن است که گونه‌های چنین آفتابی‌ترین و آفتابزور و بعضاً از گونه‌های آتی‌ترین در میان سیانوفیتا دارای وزن بیشتری هستند. افزایش یافته‌اند این امر در بزرگی سالانه نیز به چشم می‌خورد، به این ترتیب که در تابستان تراکم تحت تأثیر گونه‌های سبک وزن بالا می‌رود، لذا بر مبنای آن با زمستان که دارای گونه‌های سنگین‌تر سیانوفیتا است، بیو‌ماس چندان بالایی را دارای نمی‌باشد. مثلاً در تابستان اسیان‌زورناها، وزن ۷ میلی‌گرم غالبیت گونه‌ها را در زمستان آفتاب‌آور با وزن ۲/۱۰ میلی‌گرم گرفتار می‌کند و در زمستان آفتاب‌آور با وزن ۷ میلی‌گرم گرفتار می‌کند. برخی از مشاهده‌های محبوبیت‌نام‌های می‌دهد که در این مورد به طوری که بستگی به میان‌رود، اثر تابستان وجود دارد که در جنگل‌های بابیان دیگر زمستان نیز تراکمی از آنها دیده شده (نیم‌خط ۲ در زمستان ۱۳۷۹)، اما بالاترین تراکم آنها در گروه‌های تابستان مشاهده شده است. افزایش تراکم فصل سیانوفیتا (در تابستان) در بسیاری از تحقيقات دیگر نیز به چشم می‌خورد. چنانکه در سال ۲۰۰۰ می‌تواند به عنوان کاهش درجه حرارت در تابستان، تراکم سیانوفیتا کاهش پیدا کند که در نهایت کاهش تراکم فیتوپلانکتون کل را در خلیج Gdansk می‌گوید. سیانوفیتا کاهش یافته هستند که تراکم سیانوفیتا به یک بردنی‌تر و تزیین تر (تغییر در محیط سرما) هستند تا تاک‌جواز (سروداژست) نیز استعداد نمود. طبق این فرضیه سیانوفیتا در فصول سرد همچنان حضور دارند و تغییرات می‌کنند ولی از رشد و تکثیر چنین بالایی برخوردار نیستند. در مجموع به این نکته باید توجه نمود که دینامیکا جمعیت سیانوفیتا به‌طور تأثیر ترکیب خاصی از عوامل میکروست است و ارتباط مستقیم بین عوامل میکروست (از قبیل دما) و سیانوفیتا کمتر
دیده می‌شود (1984) (Wade)، از نظر تنوع گونه‌ای از سال 1375 به مدت 1379، با کاهش می‌خورند و نیز در هر فصل می‌توان گونه‌هایی را یافت که مختص آن فصل می‌باشد. (آنتیونوس که بیشتر در زمستان یافت می‌شود). با آنکه دما از عوامل کیتسل کننده در توزیع اکولوژیک گونه‌ها در عصر کلیه جغرافیایی است ولی گونه‌هایی با توزیع منطقه‌ای نیز می‌توانند در مناطق خود دلیر البران است که با یید عوامل دیگر را نمی‌توان در نظر گرفت (Hoffman، 1996). همچنین هنگام شاهد است که با وجود تنوع گونه‌ای زیاد، نشان‌یافته را در جمعیت فیتوپلانکتون داشته که تعداد کمی از گونه‌ها احراز می‌نمایند (سالمانوف، 1987) چنانکه در دوره مطالعه فوق نیز گونه آنتیونوس و آنابانا در طبیعت می‌باشد حداکثر تراکم را به خود اختصاص داده‌اند. حضور سیانوفیت‌ها و گیلیان به تأثیر عوامل مختلف صورت یافته که بر اثر ناپایداری با دما نیز وابسته به شاخص‌ترین آبها و گیلیان (بیزنتینی، 1776) و همکاران (1995) جلبکهای سبز آبی رشد‌های آناتوبا در اواست بهبود و اواست تابستان شکوفا و نیز گونه‌های غیر رشد‌های غیر رشد‌های اکوسیستم‌های در اواست تابستان و اواست تابستان و اواست پاییز ظاهر می‌شود، گرچه ناباید وجود هتروژنتیک را در جلبکهای رشت‌های بعنوان مراکز تثبیت نیتروژن فراوموش کرد (نقطه متغیر نیتروژنی بعنوان عامل مؤثر در افزایش جلبکهای رشت‌های). در نتیجه این تحقیق نیز حضور جلبکهای رشت‌های مانند انواع گونه‌های اسیاکالا و آنابانا در فصل تابستان کاملاً بارز است، به چنین که در تمام مدت سال جلبکهای رشت‌های به همراه گونه‌های غیر رشد‌های مشاهده می‌گردد.

تشکر و قدردانی
از همکاری‌های مربوط به تحقیقات دیگری استان ماژارستان و معاونان مربوط به تحقیقاتی مرکز در تهیه این مقاله به ویژه از تحقیقات دیگری که تحقیقاتی گیلیان و نیز یک پرس دیگر بخش بوم‌شناسی (آبشناسی و بیولوژی) مراکز تحقیقاتی ماژارستان و گیلیان برای جمع آوری نمونه‌ها و آنالیز آن و نیز از آقای مهندس فضیل جهت آنالیز آماری و مرکز خانم نیوی جهت تایپ سیاست‌گذاری و قدردانی می‌گردد.

www.SID.ir
منابع

رحیمی بشر، م. ر. ۱۳۷۹. فیتوپلانکتون. انتشارات شهر سبز، ترجمه کتاب: Dounald Boney نوشته، ۲۱۸ صفحه.

ریاحی، ح. ۱۳۷۷. جلبکشناسی. دانشگاه الزهرا، تهران، ۲۲۵ صفحه.

زابلینا، م.؛ کسیلف، ای.آ.; پیروشکینا، ای.آ.; لاورینکو، و. و شیشکوما، اس. ۱۹۵۱. جلبک‌های دیاتومه‌ای. انتشارات دولتی علوم شوری (مسکو)، جاب چهارم، ۱۵۰ صفحه.

سلمان‌نژاد، م. آ.، م. ۱۳۸۷. نقش میکروفلورا و فیتوپلانکتون‌ها در بروز‌های تولیدی دریای خزر. ترجمه: ابوالقاسم شریعتی، مرکز آموزش عالی و صنایع شیلاتی میرزا کوشک خان، رشت، ۳۷۷ صفحه.

قاسم‌اف، ع. ۱۳۸۷. دریای خزر. لنینگراد، ترجمه: بونس عادلی، انتشارات مرکز تحقیقات شیلاتی استان گیلان، ۱۰۸ صفحه.

قاسم‌اف، آ. ۱۳۹۴. اکولوژی دریای خزر. انتشارات ناواکا - باکو، ترجمه: ابوالقاسم شریعتی، موسسه تحقیقات شیلاتی ایران، ۲۲۹ صفحه.

召集明，د. ۱۳۸۳. گزارش پروژه هیدرولوژی و هیدروپیلوژی جنوبی دریای خزر. انتشارات مرکز تحقیقات شیلاتی استان مازندران، ۳۸۹ صفحه.

ماثیو سیمو، پ. و. فیلاتوا، زا. ۱۹۸۵. جانوران و تولیدات زیستی دریای خزر، ترجمه: ابوالقاسم شریعتی، موسسه تحقیقات شیلاتی استان گیلان، ۴۰۵ صفحه.

Wade, D.C., 1984. Factor affecting development of a summer, Cyanophyta dominated phytoplankton community in a mainstem Tennessee reservoir, USA, 138 P.