بررسی تغذیه سیاه ماهی در دریاچه مخزنه سد ماسکو

علیرضا ویلی پور

Valipour32@yahoo.com

مرکز تحقیقات ماهیان استخوانی دریای خزر، بندر انزلی، صندوق پستی ۶۲
تاریخ دریافت: فروردین ۱۳۸۲
تاریخ پذیرش: اردیبهشت ۱۳۸۳

چکیده

سِد مخزنه ماسکو در سال ۱۳۷۴ به‌منظور تأمین آب کشاورزی، جلوگیری از سیلاب و تولید نیروی برق در ۱۲ کیلومتری جنوب شهرستان ماسکو و در مختصات جغرافیایی ۲۹°۰۴۵ تا درجه ۲۹ شمال و ۱۱°۰۳۹ عرض شمالی احداث گردید. مطالعات تغذیه‌ای بصورت فصلی در این پژوهش‌ها تغذیه نیروی برقی و شهید با استفاده از آلات صداد شامل دستگاه صید الکتریکی، دام‌گوش‌ور و در بهره‌برداری انجام گرفت.

ماهیان صید شده در دامنه طولی ۲۷ تا ۲۹۰ میلی‌متر ولی و ۶ تا ۲۷۰ کریمی بودند. شدت تغذیه در زمستان بیشترین (تغذیه دیرترین) و در بهار کمترین مقدار بوده و میانگین آن ۳۰ بود که ناشناخته تغذیه تقریباً مطلوب سیاه ماهی در این دریاچه می‌باشد. در حالیکه بین‌شانزده ضریب چاقی دریافتان و کمیته آن در زمستان بوده است. پیوستکل سیاه ماهی در این دریاچه دارای رژیم بوهد خوراکی (Detritovorus) بوده ولی از تغذیه‌ای زیادی موجودات کفزی و همچنین فیبرولانکتون هنوز تغذیه‌ای نمی‌نماید. فیبرولانکتون‌ها به طوری که تشکیل تغذیه‌ای این ماهی‌ها تأمین می‌کنند. از Cyclotella معتمد تغذیه غذایی فیبرولانکتونی موجود در دریاچه شاخهٔ و جنس Chrysophyta مهی‌می‌باشد که مانند Ephemeroptera و Chironomidae بوده و در نزدیکی زانگوهان تغذیه ماهی واقع شده‌اند. با توجه به محدودیت متاب‌جهانی گذاشتهٔ ماهیان کفزی خوار دیگری به دریاچه توصیه نمی‌گردد.

الفان کلیدی: تغذیه، سیاه ماهی، Capoeta capoeta، سد ماسکو.
مقدمه

سپ مخزین ماکو در نقطه گازین سلسله جبال زاگرس بر روی رودخانه ژنگمار در سال 1374 احداث شد و جنس آن از نوع خاکی با هسته‌بندی و در تراز حداقل خود 310 میلیون سرمکوس کنجبان داشت و ظرفیت معیقد آن 150 میلیون سرمکوس بود (فیلتره چی، 1377). بررسی مطالعات انجام شده در این دریاچه و رودخانه‌های ورودی و خروجی آن 2 خانواده، 3 جنس و 2 گونه از ماهیان بقراز زیر تناسبی شده است (عباسی، 1378).

S. masumi
- **Carassius auratus**
- **Oncorhyncus mykiss**
- **Caprobola caproeta**

- عباسی، ت. (1380). روش‌کریم جمعیت‌سنجی ماهی‌های 88 درصد، کاراس 8 درصد و قزل آلی رنگین 4 درصد از کل جمعیت ماهیان را تشکیل می‌دهد (پورابایی، 1378). بنابراین سیاست عادی ماهی‌های مهی‌نرده گونه آنین دریاچه را شامل شده و دارای ارزش اقتصادی بالایی خواهد بود. این ماهی از خانواده Cyprinidae و در دریاچه‌ها تا عمق حداقل ۲۵ متری و در رودخانه‌ها در پانزده قلو سه‌گانه، شن و بر روی گیاهان آبی زینت و نارنجی‌روی می‌نماید (Nikolskii، 1961). طول کلي سیاه ماهی گیاه‌خوار بوده و از گیاهان بیشتر برخی از تربیت نگهداری می‌گردد، دماغه‌ی ماهی به ماهی‌های مختلف (Nikolskii، 1964) و فیلتره چی (1375). از ماهیان کم رشد بوده و حداکثر بطول 60 سانتی‌متر می‌رسد، و طول روده در ان 460 بر طول بدن می‌باشد (Nikolskii، 1964).

قبل از هر گونه دستگاهی و معرفی گونه‌های مختلف آن‌ها به این دریاچه با استفاده مطالعات جامعی در زمینه‌های مختلف علمی صورت گرفته‌اند. تا نویان تولید دریاچه براورد شده و تغییرات جمعیت یافت و قوت آن به لحاظ به‌محوری شیلاتی مشخص گردید. و موج‌های نوسه به‌یاداری را فراهم نمود. بکی از مهم‌ترین عناصر در این مطالعات، بررسی ماهی‌های موجود در منطقه است. نظر مسئول تغییرات و وضعیت رژیم غذایی آنها در این اکوسیستم مناسب است. لذا این مطالعات با هدف بررسی نوع، میزان، مخازن، اولویت و وضعیت غذایی سیاه ماهی از دریاچه سد ماکو صورت بذیرفت.

مواد و روش کار

سپ مخزین ماکو با مساحت 800 هکتار در فاصله 12 کیلومتری جنوب شهرستان ماکو و در مختصات جغرافیایی ۳۲° ۲۳ لولی و ۱۰۱° ۵۹ لولی، مکان قرار گرفته است. آب‌های و رود وی آن شامل ۲ رودخانه می‌باشد. یکی در ابتدا به رودخانه می‌باشد. و در منطقه دریاچه، ورودی رودخانه و خروجی سد آن‌ها است.
دستگاههای صندی الکترنیکی: از این دستگاه با قدرت ۵۰۰ وات و ۱۰ آمپر استفاده گردیده و از انجایی‌که ماهیان را در حالی تازه، زنده، منعطف و در اندازه‌های مختلف صید می‌نمایند. از اهمیت زیادی برخوردار بوده و در اعماق بسیاری از ۱۵ متر کاربرد چندانی ندارد.

پره: از انواع پره‌های ۲۱ تا ۱۳۰ متری با اندازه چشمه ۸ تا ۲۲ میلی‌متر استفاده شده و به لحاظ اینکه ماهیان صید شده در آن فرسته‌های مختلف غذایی داخل اندازه‌های گوشت‌های خود را نمی‌بینند.

از نمایندگی و پره‌های برخوردار است.

دام کوشک‌هایی در مناطقی که امکان پرورش کشا و استفاده از الکتروشکر وجود نداشته، از دام‌های انتظاری استفاده گردیده. از انجایی‌که ماهیان مدتی را در دام در اعماق باقی مانندند، به جهت هضم مواد غذایی داخل روده خاطی‌ای بوجود می‌آورد که به‌همین دلیل برای کاهش میزان خطا به حداصل خود، دام‌ها در فواصل زمانی کوتاه‌تری (۲ تا ۳ ساعت) مورد بازپرسی و نمونه‌برداری قرار می‌گرفتند.

ماشک (ناسیک): این ابزار صید از آب‌های اطراف جزیره کندو و عمق کم با پستر مناسب استفاده شده. تورهای پرتابی مخروطی‌شکل در اندازه‌های مختلف با چسب‌های ۸ و ۱۲ میلی‌متر، ارتفاع ۱/۵ و ۳/۵۰ متر و محیط دهانه ۱۲ و ۲۰ متر مورد استفاده قرار گرفتند.

به جهت فشارگذاری کار صحرائی در هر مرحله از نمونه‌برداری، ماهیان گوشت‌کنتر (۱۰<cm>) مستقیماً و ماهیان بزرگ فقط اعماق و احشاء آنها در فرمولوی ۴ تا ۳ دصرد ثبت گردید.

سپس زیست‌شناسی نمونه‌ها، برداشت فلس و تخمین سن، کالیدگشا، خارج نمودن دستگاه گویه و محتوای گذارای، شناسایی، شمارش و توزین انواع مواد غذایی خورده شده صورت بپذیرفت.

جهت تجزیه و تحلیل اطلاعات حاصل از چندین فرمول تغذیه‌ای بشرح زیر استفاده گردید:

- طول نسبی روده (Biswa, 1993) (Relative Lenght of Gut):

\[RLG = \frac{طول روده}{طول کل بدن} \]

که در این مطالعه از طول استاندارد استفاده شده است.

ضریب جایی (فاکتور وضعیت یا نمایه فربه‌ی) (Biswa, 1993):

\[K = \frac{W}{L^r} \times 100 \]

که در آن: \(K \) = نمایه فربه‌ی، \(W \) = وزن ماهی به گرم، \(L \) = طول ماهی به سانتی‌متر.

- شاخص شدت تغذیه یا پر خالی بودن روده (Biswa, 1993) (IF):

\[IF = \frac{w}{W} \]

که در آن: \(IF \) = شدت تغذیه، \(W \) = وزن محیط‌های غذایی روده به گرم، \(W \) = وزن ماهی به گرم.
ضروری تغذیه سیاه‌ماهی در...

ولی بور

فرآیند موجودات بلعیده شده (1993): (Biswas)

\[
\frac{\text{تعداد موجود خورده شده}}{\text{مجموع موجود خورده شده}} \times 100 = \frac{\text{فرآیند موجود خورده شده}}{	ext{تعداد روده‌های دارای طعمه}} = F_p
\]

تعیین اولویت غذایی:

\[
F_p = \frac{n_i}{N_s} \times 100
\]

که در این: \(F_p\) = اولویت غذایی با فرآیند حضور طعمه، \(n_i\) = تعداد روده‌های دارای طعمه، \(N_s\) = تعداد روده‌های بر جهت انجام تجزیه و تحلیل داده‌ها و تهیه نمودارها استفاده گردید.

نتایج

۶۶ عدد از سیاه‌ماهی‌های صید شده به‌طور تصادفی از مناطق مختلف و در فصول مختلف جهت بررسی تغذیه آنها مورد بررسی قرار گرفتند.

سیاه‌ماهی‌های صید شده برتونی در دامنه طولی، وزنی و سنی ۲۷ تا ۲۹۰ میلی‌متر، ۶/۰ تا ۲۲/۷/۲ گرم و ۱۵ تا ۷۴ سال فرار گرفته و میانگین طولی و وزنی آنها نیز برتونی ۲۰۳ میلی‌متر و ۱۵۴ گرم بوده‌است.

جدول ۱: میانگین طول و وزن سیاه‌ماهی در دریاچه سد ماکو

<table>
<thead>
<tr>
<th>سن (سال)</th>
<th>طول استاندارد (میلی‌متر)</th>
<th>وزن (گرم)</th>
<th>فصل</th>
</tr>
</thead>
<tbody>
<tr>
<td>بی‌ژر</td>
<td>۱۶۸</td>
<td>۲۱۸</td>
<td>پهار</td>
</tr>
<tr>
<td>نابین</td>
<td>۱۶۱</td>
<td>۲۰۷</td>
<td>ناتاسن</td>
</tr>
<tr>
<td>زمستان</td>
<td>۹۰</td>
<td>۱۵۰</td>
<td>بی‌ژر</td>
</tr>
<tr>
<td>زمستان</td>
<td>۱۹۸</td>
<td>۱۳۱/۸</td>
<td>نابین</td>
</tr>
<tr>
<td>میانگین</td>
<td>۱۳۵/۰۷</td>
<td>۱۸۸/۱۴</td>
<td>ناتاسن</td>
</tr>
</tbody>
</table>

نتایج حاصله نشان می‌دهد که میانگین طول نسیب روده (RLG)۴/۴۲ بوده و بنابراین در گروه گیاهخواران قرار می‌گیرد. میانگین نشان دهنده طی فصول مختلف تقریباً ۳۶۰ بوده و از پهار تا زمستان برتونی افزایش محسوسی نشان می‌دهد (نمودار ۱). میانگین ضرب جاچی در فصول مختلف ۱/۵۸۱ بوده، در ناتاسن با ۱۷۵۳ بیشترین و در زمستان با ۱۲۰۸ کمترین میزان را داشته است (نمودار ۲).

www.SID.ir
فصل
نمودار ۱: تغییرات فصلی شدت تغذیه Capoeta capoeta در دریاچه سد ماقو

فصل
نمودار ۲: تغییرات فصلی ضرب بچه‌های Capoeta capoeta در دریاچه سد ماقو
نمودار ۳ درصدی فیتوپلانتکون‌های خورده شده توسط ماهی در دریای ماهی ماسکرین.

از نظر تعداد، Synedra و Navicula Cyclotella Surirella Nitzechta از بیشترین گونه‌های غذایی محسوب می‌شوند. ۱۳/۷ درصد بیشترین فراوانی را نسبت به سایر قلب‌های فیتوپلانتکون‌های خورده شده داشته‌اند (جدول ۱). همچنین، Cyclotella و Synedra با ۶/۵ درصد، و Navicula با ۷/۵ درصد، از بیشترین گونه‌های Nitzechta و Synedra با ۷/۵ درصد، و Diatomata با ۶/۵ درصد، و Symbella با ۵/۵ درصد، بوده و از اقلام غذایی فیتوپلانتکون‌های اصلی آنها Chrysophyta سهم را داشته که همکاری انها در شاخه Surirella Actionanthus Oscillatoria Ceratium Gyrasigma باشند. در سرده‌های Cymatopleura و Meristomopedia، چند درصد اقلام غذایی که از اقلام غذایی

شماره ۱۴۲۲ از دی. ماهی ماسکرین

www.SID.ir
در دریاچه پشت سد مکو در ناحیه مختلف *C. capensis* کمی از انواع فیتوپلانکتون خورده شده توسط پایل‌زمان تاپیان و زستمان در سال ۱۳۸۳ میلادی گزارش شد.

<table>
<thead>
<tr>
<th>پایان‌زمان</th>
<th>تاپیان</th>
<th>زستمان</th>
<th>پایل‌زمان</th>
<th>سال</th>
<th>کل میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclorella</td>
<td>۵۱۴۷۵</td>
<td>۲۲.۷</td>
<td>۱۲.۷</td>
<td>۲۷۹۳۵</td>
<td>۵۴.۳</td>
</tr>
<tr>
<td>Synedra</td>
<td>۱۹۰۳۴</td>
<td>۲۰.۶</td>
<td>۱۷.۴</td>
<td>۱۵۱۴۴</td>
<td>۱۷.۶</td>
</tr>
<tr>
<td>Nitzschia</td>
<td>۱۵۳۵۰</td>
<td>۱۷.۲</td>
<td>۸.۶</td>
<td>۴۰۸۴۴</td>
<td>۱۶.۹</td>
</tr>
<tr>
<td>Navicula</td>
<td>۱۳۰۷۱</td>
<td>۱۶.۵</td>
<td>۸.۶</td>
<td>۴۵۸۳۸</td>
<td>۱۱.۶</td>
</tr>
<tr>
<td>Surirella</td>
<td>۱۸۰۱۷</td>
<td>۹.۶</td>
<td>۸.۱</td>
<td>۹۰۰۰۰</td>
<td>۱۹.۳</td>
</tr>
<tr>
<td>Stranieres</td>
<td>۲۵۴۰۰</td>
<td>۱۰.۶</td>
<td>۱۰.۱</td>
<td>۱۵۷۷۶</td>
<td>۱۴.۹</td>
</tr>
<tr>
<td>Rhococaphia</td>
<td>۱۵۰۰۰</td>
<td>۱۰.۹</td>
<td>۱۱.۰</td>
<td>۱۵۰۰۰</td>
<td>۱۱.۳</td>
</tr>
<tr>
<td>Pyrrhotheria</td>
<td>۱۳۰۷۱</td>
<td>۱۰.۷</td>
<td>۱۱.۲</td>
<td>۱۵۰۰۰</td>
<td>۱۱.۲</td>
</tr>
<tr>
<td>Dinofalia</td>
<td>۶۶۸۵۰</td>
<td>۱۴.۶</td>
<td>۱۲.۷</td>
<td>۳۷۴۹۷</td>
<td>۱۳.۸</td>
</tr>
<tr>
<td>Meicosira</td>
<td>۱۹۰۳۴</td>
<td>۱۱.۷</td>
<td>۱۱.۷</td>
<td>۳۷۴۹۷</td>
<td>۱۱.۶</td>
</tr>
<tr>
<td>Gyrosigma</td>
<td>۱۳۰۷۱</td>
<td>۱۰.۹</td>
<td>۱۰.۹</td>
<td>۳۷۴۹۷</td>
<td>۱۰.۹</td>
</tr>
<tr>
<td>Gonphoronea</td>
<td>۱۵۰۰۰</td>
<td>۱۰.۸</td>
<td>۱۰.۷</td>
<td>۳۷۴۹۷</td>
<td>۱۰.۸</td>
</tr>
<tr>
<td>Fragilari</td>
<td>۱۸۰۸۵</td>
<td>۱۳.۲</td>
<td>۱۲.۵</td>
<td>۳۷۴۹۷</td>
<td>۱۲.۵</td>
</tr>
<tr>
<td>Epithemia</td>
<td>۱۹۰۰۰</td>
<td>۱۰.۷</td>
<td>۱۰.۷</td>
<td>۳۷۴۹۷</td>
<td>۱۰.۷</td>
</tr>
<tr>
<td>Cymbella</td>
<td>۱۸۰۸۵</td>
<td>۱۲.۵</td>
<td>۱۲.۵</td>
<td>۳۷۴۹۷</td>
<td>۱۲.۵</td>
</tr>
<tr>
<td>Cymatoporeu</td>
<td>۱۸۰۸۵</td>
<td>۱۲.۵</td>
<td>۱۲.۵</td>
<td>۳۷۴۹۷</td>
<td>۱۲.۵</td>
</tr>
<tr>
<td>Cocconeis</td>
<td>۱۸۰۸۵</td>
<td>۱۲.۵</td>
<td>۱۲.۵</td>
<td>۳۷۴۹۷</td>
<td>۱۲.۵</td>
</tr>
<tr>
<td>Amphora</td>
<td>۱۸۰۸۵</td>
<td>۱۲.۵</td>
<td>۱۲.۵</td>
<td>۳۷۴۹۷</td>
<td>۱۲.۵</td>
</tr>
<tr>
<td>Actinophyes</td>
<td>۱۸۰۸۵</td>
<td>۱۲.۵</td>
<td>۱۲.۵</td>
<td>۳۷۴۹۷</td>
<td>۱۲.۵</td>
</tr>
<tr>
<td>Teledacron</td>
<td>۱۸۰۸۵</td>
<td>۱۲.۵</td>
<td>۱۲.۵</td>
<td>۳۷۴۹۷</td>
<td>۱۲.۵</td>
</tr>
<tr>
<td>Chlorophyta</td>
<td>۵۰۰۰۰</td>
<td>۱۰.۷</td>
<td>۱۰.۷</td>
<td>۳۷۴۹۷</td>
<td>۱۰.۷</td>
</tr>
<tr>
<td>Cylindrothium</td>
<td>۱۸۰۸۵</td>
<td>۱۲.۵</td>
<td>۱۲.۵</td>
<td>۳۷۴۹۷</td>
<td>۱۲.۵</td>
</tr>
<tr>
<td>Oocystis</td>
<td>۱۸۰۸۵</td>
<td>۱۲.۵</td>
<td>۱۲.۵</td>
<td>۳۷۴۹۷</td>
<td>۱۲.۵</td>
</tr>
<tr>
<td>Nostoc</td>
<td>۱۸۰۸۵</td>
<td>۱۲.۵</td>
<td>۱۲.۵</td>
<td>۳۷۴۹۷</td>
<td>۱۲.۵</td>
</tr>
<tr>
<td>Cylindrothium</td>
<td>۱۸۰۸۵</td>
<td>۱۲.۵</td>
<td>۱۲.۵</td>
<td>۳۷۴۹۷</td>
<td>۱۲.۵</td>
</tr>
<tr>
<td>Anaklyostromus</td>
<td>۱۸۰۸۵</td>
<td>۱۲.۵</td>
<td>۱۲.۵</td>
<td>۳۷۴۹۷</td>
<td>۱۲.۵</td>
</tr>
<tr>
<td>Oscillatoria</td>
<td>۱۸۰۸۵</td>
<td>۱۲.۵</td>
<td>۱۲.۵</td>
<td>۳۷۴۹۷</td>
<td>۱۲.۵</td>
</tr>
<tr>
<td>Menisporium</td>
<td>۱۸۰۸۵</td>
<td>۱۲.۵</td>
<td>۱۲.۵</td>
<td>۳۷۴۹۷</td>
<td>۱۲.۵</td>
</tr>
<tr>
<td>Euglenophyta</td>
<td>۱۸۰۸۵</td>
<td>۱۲.۵</td>
<td>۱۲.۵</td>
<td>۳۷۴۹۷</td>
<td>۱۲.۵</td>
</tr>
<tr>
<td>Lipocinclus</td>
<td>۱۸۰۸۵</td>
<td>۱۲.۵</td>
<td>۱۲.۵</td>
<td>۳۷۴۹۷</td>
<td>۱۲.۵</td>
</tr>
<tr>
<td>Euglenia</td>
<td>۱۸۰۸۵</td>
<td>۱۲.۵</td>
<td>۱۲.۵</td>
<td>۳۷۴۹۷</td>
<td>۱۲.۵</td>
</tr>
<tr>
<td>Pyrrophyta</td>
<td>۱۸۰۸۵</td>
<td>۱۲.۵</td>
<td>۱۲.۵</td>
<td>۳۷۴۹۷</td>
<td>۱۲.۵</td>
</tr>
<tr>
<td>Ceratium</td>
<td>۱۸۰۸۵</td>
<td>۱۲.۵</td>
<td>۱۲.۵</td>
<td>۳۷۴۹۷</td>
<td>۱۲.۵</td>
</tr>
<tr>
<td>Pyrrophyta</td>
<td>۱۸۰۸۵</td>
<td>۱۲.۵</td>
<td>۱۲.۵</td>
<td>۳۷۴۹۷</td>
<td>۱۲.۵</td>
</tr>
<tr>
<td>Spheilum</td>
<td>۱۸۰۸۵</td>
<td>۱۲.۵</td>
<td>۱۲.۵</td>
<td>۳۷۴۹۷</td>
<td>۱۲.۵</td>
</tr>
</tbody>
</table>

www.SID.ir
جدول ۳ فراوانی کیفی (ارویت غذایی) انواع لیتوپلاکتون خورده شده توسط Capoeta capoeta در دریایی پشت سد ماکور در فصول مختلف

<table>
<thead>
<tr>
<th>شاخه</th>
<th>بردار</th>
<th>نسبت</th>
<th>پایه‌زه</th>
<th>کل سال</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>درصد</td>
<td>تعداد</td>
<td>درصد</td>
<td>تعداد</td>
</tr>
<tr>
<td>Cyclotella</td>
<td>57.5</td>
<td>149</td>
<td>63.6</td>
<td>12</td>
</tr>
<tr>
<td>Synedra</td>
<td>65.4</td>
<td>7</td>
<td>4.5</td>
<td>9</td>
</tr>
<tr>
<td>Nitzschia</td>
<td>52.5</td>
<td>7</td>
<td>24.2</td>
<td>5</td>
</tr>
<tr>
<td>Navicula</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Suneilla</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Chrysophyta Stranioses</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Rhicocospheria</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Pinnularia</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Diatoma</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Melosira</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Gyrosigma</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Gomphonema</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Fragillaria</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Epithemia</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Cymbella</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Cymatopleura</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Cocconeis</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Amphora</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Achnanthes</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Tetraedron</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Chlorophyta Pediastrum</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Oosystis</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Mougeotia</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Curogenia</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Ankistrodesmus</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Cyanophyta Oscillator</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Merismopedia</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Eugiophyta Lipocincis</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Euglena</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Ppyrophyta Ceratium</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
<tr>
<td>Spirulina</td>
<td>65.5</td>
<td>7</td>
<td>88.5</td>
<td>7</td>
</tr>
</tbody>
</table>
زانیولانکتوزها نقش بسیار کمی در رژیم غذایی سیاه ماهی داشته و تنها در فصل زمستان مقدار بسیار ناچیزی Copepoda در روده یک ماهی مشاهده شده است.

حشرات آبی و کفیزیان در 41 درصد از سیاه ماهیها مورد بررسی یافته شده است و ترکیب اینها در سیاه ماهی های شبه بستری اصلی آن بشرمان می‌روند.

بعلاوه کفیزیان نظر اقلام غذایی فرعي آنها را تشکیل داده و سایر مواد غذایی کفري در جزء غذایی رفاهی اتفاق آن محصول می‌گردد(نمودار 4). از نظر قبیلی نیز موجودات کفري در بهار و زمستان پیشترین نشان را در نگهداری سیاه ماهیان داشته و ترکیب آنها در صورتی در زمستان نیز ماهیان مورد بررسی می‌دهد. اما در فصول پاییز و شرایط زمستان کفیزیان اهمیت‌چندانی در تغذیه آنها نمی‌نمایند. البته در نتیجه ترکیبی کفیزیان در زمستان بسیار بوده و در پاییز هر سه درصد آنها نیز در نظر گرفته شده.

نمودار 5.

مواد دندریتی در رژیم غذایی 77 درصد از سیاه ماهی‌های مورد بررسی مشاهده شده که تقضیه تمامی آنها از مواد دندریتی که به دندریت بی‌شیر و دندریت بی‌شیر بوده و در فصول پاییز و زمستان بوده‌ترکیب‌های تقریباً در 100 درصد روده‌های مورد مطالعه در این فصول وجود داشته است. در حالی که در فصول بهار و تابستان بحرانی‌تر بوده و 82 درصد و 50 درصد ماهیان یافته شده است. بنا براین بطور کلی مواد دندریتی در تمامی فصول جزء اقلام غذایی اصلی سیاه ماهی بسیار می‌رود.

خاک رس و سنگرژه‌های نیز تقریباً در 40 درصد ماهیان وجود داشته که جنیه‌های غذایی ناشی از همراه با سایر مواد غذایی و دندریت در این غذایهو غذایه از کف می‌تواند وارده و به لوله گوارشی آنها می‌شود.

نمودار 4: مقایسه درصد کفیزیان خورده شده توسط سیاه ماهی در دریاچه سد ماقو.
نمودار ۵: فراوانی سیاه‌ماهیان تغذیه کرده از کف‌زنی در فصول مختلف در دریاچه سد مکو

نمودار ۶: درصد سیاه‌ماهیان تغذیه کرده از دترویت در فصول مختلف در دریاچه سد مکو
بحث

موجودات غذایی دریایی عموما شامل بلاکون، موجودات کفیزی و حشرات آبی، مواد دتیسی و گاهی ماهیان می‌باشد. از غروه‌های فيسولیناتونی 5 شناخت و 48 جنس بافت شده توسط که جمعیت انها از بهار تا نیمه‌سال صاحب کاهشی هستند. در پایان با سرشدنی دو تا این ادامه به هدایت چرخ را است. این موضوع Chrysophyta حداکثر خود را می‌کند. (نکاتی، 1378). غالیبی با شاهدین نشانگر کشف خوب برای که ماهی انقاص شده (کاربرد یک) 1378. ریشه‌های (زیر شاخه (Ciliophora) و (Copepoda Cladocera Arthropoda Protozoa), که بیش از 72 و 23 درصد (8 و 14 درصد بیشتر راسته‌ها) از فراوانی را تشکیل داده‌اند (سیب اکر، 1378).

32 گروه از انواع موجودات کفیزی در منطقه مورد مطالعه مشاهده شد که هر 75/78 درصد از آنها را لاروهای شیروی‌میوه (Epischidionidae) درصد هر 15/3 درصد حشرات یک روزه (Cladocera) و 10 درصد را سایر گروه‌ها تشکیل می‌دهند. از طریق در منطقه دریایی اصلی که اکثر ماهیان در آن مستقر شده‌اند، تنها 19 گروه کفزیزی بافت شده که هر 86/7 درصد از انها را شیروی‌میوه (Lupificidae) تشکیل می‌دهد (Oligochaeta) و نشانگر 2 درصد بقیه را 17 گروه دیگر به تشکیل داده‌اند (رزینه‌ی نژاد، 1378). بعلاوه ماهی‌سانان سالمانی زینوهید موجودات کفیزی در 1377 در شرایط 37/7 درصد این گروه هر 1/25 درصد می‌باشد. در مضرم بوده، که 2/15 درصد لاروهای شیروی‌میوه و 2/27 درصد بر می‌رود را نشانگر کف‌میوه‌های کم‌تار (Oligochaet). این دریاچه به لحاظ اجتماعات گیاهان آبی بدلیل شبیه بستر و عمق زیاد آب فقیر بوده و جامعه گیاهی آن تنها محدود به نواحی حاشیه‌ای شده است.

با اینکه داده‌های حاصله از طول صفحه روده (نماهنگر زریغ غذایی گیاه‌خواری شیاه ماهی) است، اما با توجه به اطلاعات بسته آمده از مواد غذایی خورده شده، مشاهده می‌گردد که این ماهی از طرف و تنویف وضعیت غذایی برخوردار می‌باشد. ولی میزان تغذیه نشان می‌دهد که سیب ماهی در دریاچه مکرر از وضعیت غذایی نسبتاً (و همگام) مطلوبی برخوردار است. از نظر فنی، می‌توان نتیجه گرفت که شدت تغذیه بجز در فصل زمستان در سایر فصول بیشتر رضایت بخش نیست ولی از بهار تا زمستان افراشنت نسبی را نشان می‌دهد. از احتمالی که رشد ماهی متأثر از عوامل مانند کیفیت و کیفیت غذا، میزان جذب غذا و مداوم آب می‌باشد، لذا دمای آب بر میزان همبولیسم و مصرف انرژی تأثیر می‌گذارد. (Shepherd & Bromage، 1995) بنابراین در فصول گرم می‌گذارد در شرایط غذایی، افراشنت یافته شده تغذیه افراشنت تولید محتوی ای و تیور افراشنت فعالیت موجودات غذایی زندگی افراشنت یافته. ولی با شروع فصل سرمای باننی از مقدار آن کاسته می‌گردد (ولی بور، 1375) در زمستان به رغم اینکه تصویر می‌شود می‌بایستی از میزان شدت تغذیه سیب ماهی کاسته شود، ولی افراشنت می‌باید. زیرا در این
فصل تقریبا تمامی ماهیان از مواد دتروئیک به زیاد نژادی چنین نموده و نیز سرعت هضم و جذب آنها بدلیل
کاهش دما (1990) تقلیل می‌یابد و جهت جنگلهای محیطی و یک‌سانی مصرف روده‌ها را
فرآهم می‌نماید. بطوریکه اکثر سیستم ماهی‌های مورد بررسی در فصل زمستان تقریباً تا انتهای لوله‌گوارش
نوردیک مصرف دارای مواد دتروئیک هضم نشده بوده‌اند. میزان ضریب قناع نیز مؤثر در موضوع است.
بطوریکه بیشترین ضریب قناع در فصول گرم سال بوده و با کاهش دما و شروع فصل سرمای و عدم
دستریک به منابع غذایی زنده، بندبرگ از میزان آن کاسته شده بطوریکه در زمستان بحذف می‌رسد. در
حالیکه شدت تعقیب در هرین ایام در حداکثر مقدار خود قرار دارد (البته تعقیب دتریتی)، که‌خود
می‌تواند ناشی از عدم تنبل غذایی یا نشیمنی منابع غذایی باشد.

دیده‌ها نشان می‌دهد از انسان نیز شاخص Chrysophyta و گروه Bacteriovorina به‌طور بیشترین فراوانی‌ها
در دریاچه داشتند (مکارمی، 1378)، بنابر این بیشتری بود و نیز در تعقیب سیاه‌ماهی‌ها دارا بوده و
غذای فیتوپلاستک‌یونی اصلی آنها را تشکیل می‌دهند. اما زیر انواع که وجود فراوانی قابل ملاحظه خود
در محیط (سپر، ارا، 1378) کمترین سهم را در تعقیب سیاه‌ماهی‌ها بکرای اختصاص می‌دهند. البته
از انسان‌که هضم و جذب آنها بسیار سریع Ciliaphora و Rotifera به‌نظر می‌رسد. از این‌گونه موجودات مانند
Watanabe et al., 1983; Awais, 1991 می‌باشد. این‌ها نشان می‌دهند امکان دسترسی به آنها در روده‌های
مورد بررسی می‌رسد نبوده است و عدم مشاهده آنها در روده‌ها نمی‌تواند دلیل بر عدم تعقیب سیاه‌ماهی‌ها
اندک (Nikolskii, 1961) اظهار می‌نامد. مواد موجودات جانوری که اغلب توسط این سیاه‌ماهی خورده
می‌شوند به‌صورت گیاهان ابزاری که غذای اصلی آن را تشکیل می‌دهند، بلع می‌گردد اما هم‌الastery
که‌خود باعث شید دریاچه از نظر گیاهان ابزاری غذایی و فلور فضایی شود.

سه‌ماهی‌ها با توجه به قسم دیگر زیرین، عدمی کفی خوراکی بوده و موجودات کفی اهمیت
بسزایی در تعقیب آنها دارند. باعث از آن‌گونه که لاره‌های شریک وحشرات یکی روزه بیشترین
فرآوانی را در محیط طبیعی داشتند، بنابر این در روده‌های مورد بررسی نیز بیشترین سهم را بخود
اختصاص می‌دهند (خصوصاً لاره‌های شریک وحشرات). اما مقدار حیوانات که گرفته در این دریاچه به نسبت
کم بوده و دریاچه از نظر موجودات کفی این چنین غنی نیست، بطوریکه در مقایسه با سایر منابع آبی
مشابه هم‌چون دریاچه سد ارس که مقدار 10 گرم در متر مربع اندکی درآمد 1755 (صفایی، 1375)
بهرابت کمتر می‌باشد. لذا معرفی هر گونه ماهی بیشتر خوراکی غلیظ و ارزش بالای رقابت‌های دیگر
ابن آکوستس، می‌تواند با کم‌کمیت منابع غذایی شده و احتمالاً موجب کاهش و نیز این رفتار نسل آنها
خواهد شد.

مواد دتروئیکی از سایر انواع غذایی اصلی سیاه‌ماهی می‌باشد. از انسان نیز اکثر بروند سبزیجات
است، می‌تواند شامل فیتوپلاستک‌یونی ساقط شده یا حذف باشد که مهم‌تر با مواد دتروئیک وارد می‌شود.

که‌خود این مشکل است.
تغییرات فصلی غذایی نشان می‌دهد که در صورت گرم سال مه آلودگی غذایی را فیتوپلنتکنیا و حشرات آبزی (کفپز) تشکیل داده، و ممنوع تامینی نیز یکی از اقلام غذایی اصلی آنها است. البته در مقایسه با صورت سرد از نسبت کمبود برخوردار می‌باشد. در صورت سرد یعنی پاییز و زمستان ضمن اینکه تنش فیتوپلنتکنیا در محیط طبیعی و نیز در روده‌های مورسی بررسی نسبت بالایی دارد و اکثر آنها به‌عنوان غذای فرعی یا اتفاقی محسوب می‌گردد، ممنوع غذایی کتنوعی نیز به حداکثر اهمیت خود در تغذیه می‌رسید، در حالی که در تغذیه افرادی که در ماه‌های مختلف رژیم غذایی به‌طور معمول ماهیانه شده و جو کاهش داشته‌اند. زیرا در صورت گرم فعالیت و تولید موجودات کنن کفپز بیشترین تغذیه را نیز به عمل می‌آورد. در حالی که در پاییز و زمستان از فعالیت آنها کاسته شده و از دسترس ماهیان خارج می‌شوند، بعلاوه اینکه جمعیت زیادی از آنها در صورت گرم سال توسط ماهیان خودش می‌دریایند و بنابر این از جمعیت آنها در فصول سرد سال کاسته شده است، که مجموعه این عوامل سبب کاهش تغذیه بنیوی می‌گردد.

تشکر و قدردانی

از آقای مهندس محمدرضا مسایلی که گزارش‌های مطبوع و آزمایشگاهی این پژوه را به انجام رسانده‌اند و همچنین همکاران گروه مهندس عباسی، مهندس کریمی‌پور، همیت الله نوروزی، مصطفی صیاد رحمی، سید محمد صلواتیان، عباس زحمتکش، خانم مهدی، محرم ایرانی‌پور و شعبان روحانی سپاسگزاری می‌نمایم.

منابع

بورانی، م.، ۱۳۷۸. گزارش نهایی پروژه ارزیابی ذخایر ماهیان در دریاچه مخزنه سنداکو. مرکز تحقیقات شیلاتی استان گیلان. ۲۵ صفحه.

زلفی نژاد، ک.، ۱۳۸۸. گزارش نهایی پروژه مطالعات موجودات کفپز در دریاچه مخزنه سنداکو. مرکز تحقیقات شیلاتی استان گیلان. ۲۵ صفحه.

سیب آراچ.، ۱۳۷۸. گزارش نهایی پروژه مطالعات زئوپلنتکنی دریاچه سنداکو. مرکز تحقیقات شیلاتی گیلان. ۴۸ صفحه.

عباسی، ک.، ۱۳۷۸. گزارش نهایی پروژه مطالعات ماهیان شناسی در دریاچه مخزنه سنداکو. مرکز تحقیقات شیلاتی استان گیلان. ۴۲ صفحه.

عباسی، ک.، ولی‌پور، ع. حقيقی، د. سربانه، ع. و نظامی، ش. ۱۳۷۸. اطلس ماهیان ایران. آپاها داخی گیلان. انتشارات مرکز تحقیقات شیلاتی گیلان. ۱۳۷ صفحه.

فطروه چی، ه.، ۱۳۷۷. گزارش هیدرولوژی و هیدرومترالوژی سد مخزنه سنداکو. مرکز تحقیقات شیلاتی استان گیلان. ۲۸ صفحه.

www.SID.ir
Awaiss A. , 1991. Mass culture and nutritional quality of the freshwater Rotifer (Brachionus calciferous) for Gudgeon (Gobio gobio L.). European aquaculture society, special publication , No.15, Gent, Belgium. 15P.

