Population dynamics of *Donax faba* (Family: Donacidae) in the coastal waters of Padukere, Karnataka (India)

Tenjing S.Y.¹²

Received: November 2015 Accepted: August 2016

1-Department of Biosciences, Mangalore University, Mangalagangothri 574 199, Karnataka, India
2-Conservation of Coastal and Marine Resources Division, National Centre for Sustainable Coastal Management, Chennai 600 025, Tamil Nadu, India
*Corresponding author's Email: yambemtenjing@gmail.com

Keywords: Wedge clam, Growth, Age, Mortality, Karnataka

Introduction
Macrobenthic organisms that live in constantly disturbed high-energy sandy substrates, have evolved specific morphological and equally important behavioural features for them to flourish (Ansell and Trevallion, 1969). Species of the tropical mollusc family Donacidae, are well known to exploit the swash and the backwash to keep within the zone of breaking waves in order to feed on the sparse nutrients held briefly in suspension by them (Ansell, 1981). These filter-feeding clams inhabit sandy beaches along the Indian coast, including the Indian Island (Rao and Dey, 1986, 2000). The members of the genus *Donax* are an abundant component of the intertidal fauna in many parts of the world (Coe, 1953; Laudien *et al.*, 2003; Herrmann *et al.*, 2009). Growth checks can be caused by high seas, inhibition of growth at low or high temperature, attacks by predators, physical disturbances, pollution and spawning events (Lutz and Rhodes, 1980; Wilbur and Owen, 1983), and can be periodic (an effect of tides, lunar months or seasons), or irregular (due to random events such as cyclones) (Jones, 1981). In this case, there is some disagreement about the interpretation of growth lines (Jones, 1981; Bourget *et al.*, 1991), and without validation such data may be unreliable. The population of donacids such as *Donax incarnatus* generally reaches high densities and is the most abundant species yielding high biomass along Karnataka coast, India (Thippeswamy, 1985). *D. faba* is easily recognizable from other wedge clams compared to other species like *D. incarnatus* and *D. scortum* co-occurring
in the Padukere beach. Recently, Tenjing et al. (2011, 2016a) studied the population dynamics of *D. faba* and *D. scortum* from Mangalore and Padukere coasts (Karnataka), respectively. For the management of mollusc resources, information on various population parameters and exploitation levels of the population of wedge clams is essential. Throughout the world, bivalve exploitation plays an important role in the national economy of many countries (Vakily, 1992). There are many tools for assessing exploitation levels and population biology of a stock. Of those, FAO-ICLARM Stock Assessment Tools (FiSAT) was used for calculating population parameters of *Donax* species (Zeichen et al., 2002; Cardoso and Veloso, 2003; Tenjing et al., 2011). *D. faba* and large sized *D. scortum* are the important test organisms which had been used recently to study bioaccumulation of heavy metal contents in the meat from the polluted and unpolluted areas along Karnataka coast (Tenjing et al., 2012a,b; 2013). However, no detail studies on population dynamics are carried out on *D. faba* at Padukere (India).

Materials and methods

Wedge clam, *Donax faba* of different sizes were collected from the intertidal region of Padukere sandy beach (13º20'51.80"N; 74º41'30.92"E), Karnataka for a period of 12 months (May 2009-April 2010) (Fig. 1). The length (maximum distance along the long axis of the valves) was measured using Vernier calipers (Fig. 2) (FAO, 1998). For estimating von Bertalanffy growth parameters, asymptotic length (*L*_∞) and growth co-efficient (*K*), and the length measurements of one year data were pooled and grouped with class interval, month-wise and analysed using the ELEFAN I of FiSAT software (Gayanilo et al., 1996). The parameter *t*₀ of the growth equation was estimated using the equation of Pauly (1979).

The estimates of *L*_∞ and *K* were used to estimate the growth performance index (*ϕ′*) using the equation, *ϕ′* = 2log *L*_∞ + log *K* (Pauly and Munro, 1984). Growth was described by the von Bertalanffy growth function (*VBGF*) (von Bertalanffy, 1938). The *VBGF* is defined by the equation, *L*_t = *L*_∞ [1- e^{-K(t-t0)}], where *L*_t is the length at time *t*, *e* is the base of the natural logarithm, *t* the time of observation and *t*₀ the age to which the clam belongs at zero size.

Using the values of *L*_∞, *K* and *t*₀, the growth curve was fitted from the von Bertalanffy growth equation. Since non-linear growth functions are difficult to compare, several authors (Pauly, 1979, Munro and Pauly, 1983) demonstrated the suitability of composite indices for overall growth performance (*OGP*) for inter and intra-specific comparisons. The *OGP* is calculated as *OGP* = log(*K[Li]3*). The total mortality (*Z*) was estimated by a length converted catch curve method (Pauly, 1984).
The natural mortality coefficient \((M)\) was determined using \(M\approx K\) approximation (Gayanilo et al., 1996). On the other hand, the population of *Donax faba* is known to be unexploited. Therefore, \(F\) is equal to 0. The recruitment pattern was obtained by projecting the length-frequency data backwards on the time axis using growth parameters (Moreau and Cuende, 1991).
Results and discussion

In India, donacids mostly live in sandy beaches of India (Rao and Dey, 1986). For the entire period, the data on the length frequency distribution of clams is given in Fig. 3. The distribution shows the distinct modes in the months. Asymptotic length \(L_\infty \) of the VBGF was 27.09 mm and the growth coefficient \(K \) was 0.90 yr\(^{-1} \) for Donax faba. The computed growth curve is shown over the length distribution in Fig. 3. Estimation of \(K \) was shown in Fig. 4. The calculated \(t_o \) was -0.019 yr. Thus the Bertalanffy growth equation for \(D. \ faba \) was written as \(L_t = 27.09 \left[1 - e^{-0.90 (t + 0.019)} \right] \). The growth performance index \((\phi) \) was 2.82 (Table 1), whereas the overall growth performance index \((OGP) \) was 4.25. The results showed estimates of asymptotic length \(L_\infty \) for \(D. \ faba \), which are very similar to \(D. \ faba \) reported from the Gulf of Mannar and Panambur (Alagarswami, 1966; Tenjing et al., 2011), but the growth coefficient \(K \) value (0.10 yr\(^{-1} \)) from the Gulf of Mannar (Tamil Nadu) is lower than the \(K \) values reported from Panambur and Padukere (Table 1).

Most species of Donax have a short life expectancy of 1-2 yrs (Ansell, 1983). Various environmental factors are known to influence molluscan growth (Alagarswami, 1966; Thippeswamy and Joseph, 1991). Several investigations have found that both in tropical and temperate waters growth rates of the mollusc are not uniform throughout the year. The von Bertalanffy growth curve is presented in Fig. 5. The life span of Donax faba collected from Padukere in the present study is about 3.4 yrs (40 months). The sizes attained by \(D. \ faba \) were 16.26, 22.69, and 25.30 mm in the first, second and third years, respectively.
Figure 3: Growth curves fitted by ELEFAN I to length-frequency of Donax faba.

Figure 4: Estimation of growth constant (K) and growth performance index (GPI) Donax faba from Padukere beach.

Table 1: von Bertalanffy parameters L_∞ (mm), K (yr$^{-1}$) and ϕ' of donacids from Indian regions for Donax species.

<table>
<thead>
<tr>
<th>Species</th>
<th>L_∞ (mm)</th>
<th>K (yr$^{-1}$)</th>
<th>ϕ'</th>
<th>Climate area</th>
<th>Location</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donax incarnatus1,2</td>
<td>25.13</td>
<td>0.09</td>
<td>1.86</td>
<td>Tropical</td>
<td>Cochin, India</td>
<td>Ansell et al. (1972)</td>
</tr>
<tr>
<td>D. incarnatus1,2</td>
<td>29.04</td>
<td>0.09</td>
<td>1.86</td>
<td>Tropical</td>
<td>Shertallai, India</td>
<td>Ansell et al. (1972)</td>
</tr>
<tr>
<td>D. incarnatus1,2</td>
<td>20.06</td>
<td>0.09</td>
<td>1.55</td>
<td>Tropical</td>
<td>Benaulim, India</td>
<td>Nair et al. (1978)</td>
</tr>
<tr>
<td>D. incarnatus1</td>
<td>30.94</td>
<td>0.16</td>
<td>2.19</td>
<td>Tropical</td>
<td>Panambur, India</td>
<td>Thippeswamy and Joseph (1991)</td>
</tr>
<tr>
<td>D. cuneatus2</td>
<td>22.87</td>
<td>0.06</td>
<td>1.48</td>
<td>Tropical</td>
<td>Palk Bay, India</td>
<td>Nayar (1955)</td>
</tr>
<tr>
<td>D. cuneatus1,2</td>
<td>33.02</td>
<td>0.04</td>
<td>1.67</td>
<td>Tropical</td>
<td>Miriya Bay, India</td>
<td>Talikhedkar et al. (1976)</td>
</tr>
<tr>
<td>D. faba1,2</td>
<td>26.15</td>
<td>0.10</td>
<td>1.84</td>
<td>Tropical</td>
<td>Gulf of Mannar, India</td>
<td>Alagarswami (1966)</td>
</tr>
<tr>
<td>D. faba1</td>
<td>26.67</td>
<td>0.89</td>
<td>2.80</td>
<td>Tropical</td>
<td>Panambur, India</td>
<td>Singh et al. (2011)</td>
</tr>
<tr>
<td>D. scortum1</td>
<td>70.88</td>
<td>0.64</td>
<td>3.51</td>
<td>Tropical</td>
<td>Padukere, India</td>
<td>Singh (2016b)</td>
</tr>
<tr>
<td>D. faba1</td>
<td>27.09</td>
<td>0.90</td>
<td>2.82</td>
<td>Tropical</td>
<td>Padukere, India</td>
<td>Present study</td>
</tr>
</tbody>
</table>

1Age estimated from length-frequency distributions.
2Values calculated on monthly basis from raw data reported by the authors.
The calculated average growth rates of *D. faba* in the first, second and third years were 1.36, 0.54 and 0.22 mm respectively. For the remaining four months, the calculated average growth rate was 0.02 mm. The growth rate is faster in their early part of life than during the latter. Longevity of *D. faba* was found to be 3.4 yrs. The estimated life span for *D. incarnatus* and *D. faba* along Karnataka coast were less than 1.5 and 3.6 yrs respectively at Panambur, Karnataka (Thippswamy and Joseph, 1991; Tenjing et al., 2011). The growth of *D. faba* estimated by employing the size (length) frequency method using von Bertalanffy’s equation. The growth rate of *D. faba* decreases with an increase in age. From Fig. 5, the first year group showed the maximum growth rate attaining the length of 16.3 mm. The growth rate declined gradually during the second and third years. The present observation is substantiated by the statement of Tenjing et al. (2011).

Of the other species of *Donax*, two spawnings per year has been reported for *D. sordidus*, which has a life span of around two years, giving a total of around four spawnings per individual (McLachlan and van der Horst, 1979), and a similar bi-annual spawning has been reported for *D. semistriatus* (Neuberger-Cywiak et al., 1990). For most other *Donax*, only a single spawning per year has been reported, even for tropical species with short lives, although here again the evidence is rather inconclusive and Ansell et al. (1972) suggested that some individuals of *D. incarnatus* from Kerala coast (India) may be in spawning condition at all times.

The recruitment pattern of *D. faba* was continuous throughout the year and the only major peak observed was during May-July. The peak pulse produced 25.59% of the observed
recruitment in June, followed by 20.11% (May) and 16.74% (July) (Fig. 6). Recruitment by settlement of post larvae is a critical period within the life cycle. It is conditioned by various factors that, in the long run, affect the dynamics and structure of the population (Eckman, 1996). Defeo (1996) stated that variability of recruitment may be considered as the main factor affecting the abundance of benthic populations. One recruitment was observed during this study; while in June recruits surpassed 50% of the total number of individuals in the population, recruitment was very low in January (0.19%). However, more one recruitment was already mentioned for D. faba in another locality of Panambur, Karnataka (Tenjing et al., 2011).

Settlement intensity may show important fluctuations, causing common alternations of high and low recruit abundance in Donax (Tenjing et al., 2011). These variations could be related to changes in the environmental conditions, to prey-predator interactions and/or to density dependent factors. It should be also caused, at least in part, by events that occurred before the pediveliger settlement (Hemachandra, 2011). The inverse relation between growth rate and age assumed by the von Bertalanffys equation has been confirmed for D. faba (Alagarswami, 1966; Singh et al., 2011) as it was also present in D. faba from Padukere beach. Tenjing (2013, 2016a) and Thippeswamy (1985) stated that temperature controls both the beginning and the end of the growth season in donacids in the coastal waters of Karnataka. Food availability has also been reported as controlling the growth in the same species, by determining if either one or two growth periods occur during a year (Beukema and Desprez, 1986).

The total mortality (Z) based on the length converted catch curve based on ambient temperature (28.7°C) is presented in Fig. 7.

![Figure 6: Recruitment pattern of Donax faba.](image)
The estimated total mortality (M) was 2.17 yr^{-1}. *Donax faba* is not a commercially important species in Karnataka. Fishing mortality was not calculated at the unexploited site, Padukere. Therefore, natural mortality (M) was also 2.17 yr^{-1} since Z was 2.17 yr^{-1}, *i.e.*, $Z=M$. On the other hand, the exploitation level (E) was not possible to be estimated at the unexploited site. The low mortality (2.17 yr^{-1}) registered for *D. faba* in the present study might be related to lower predation rates (Cardoso and Veloso, 2003).

Acknowledgements

The author is thankful to the authorities of Mangalore University (Karnataka) for providing research facilities during research work. The research work was supported by BSR-UGC Meritorious Fellowship [UGC No. 4-1/2008(BSR)] from the University Grant Commission, New Delhi, India.

Reference

Tenzing, S. Y., Krishnamoorthy, M. and Thippeswamy, S., 2012b. Status of heavy metals in tissues of wedge clam, *Donax faba* (Bivalvia: Donacidae) collected from the...
Panambur beach near industrial areas. *Recent Research in Science and Technology*, 4, 30-35.

Vakily J. M., 1992. Determination and comparison of bivalve growth, with emphasis on Thailand and other tropical areas. Manila: ICLARM.

