سنجد جیوه در بافت‌های مختلف

ماهی سوف سفید (Sander lucioperca) دریای خزر

لیلا طاهری آزاد (1)؛ عباس اسماعیلی ساری (2) و کامران رضائی توابع (3)
ltaheriazad@yahoo.com

1-وی-دانشگاه‌های منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور صنادوق پستی: 13555-2245
2-استکبار بزرگ‌شهری مرکز تحقیقات بین‌المللی همیستی با کوری دانشگاه تهران;
3-سمنان صنادوق پستی: 25145-1385

تاریخ دریافت: بهمن 1386
تاریخ پذیرش: خرداد 1387

چکیده

این مطالعه با هدف بررسی تاثیر سه عامل وزن، سن و جنسیت بر میزان تجییج فلز جیوه در بافت‌های عضله، کبد، آبشش و
بوست ماهی سوف سفید (Sander lucioperca) و مقایسه غلظت جیوه در بافت‌های مذکور با حد مجاز استانداردهای جهانی
انجام شد. برای اجرای تحقیق در زمستان 1386 در سواحل غربی دریای خزر (از صیدگاه جفرود تا تالاب انزلی) 21 عدد
ماهی سوف بصورت تصادفی صید و پس از انجام مرحله زیست‌سنجی نمونه‌ها (اندازه‌گیری طول و وزن آنها) و تشخیص
Advanced Mercury Analyzer جنسیت، غلظت جیوه در بافت‌های عضله، کبد، آبشش و بوست با استفاده از دستگاه
اندازه‌گیری شد. براساس نتایج بدست آمده میانگین غلظت جیوه در بافت‌های عضله، کبد، آبشش و بوست برترین
و وزن خشک بود. بین فاکتورهای سن ppb و وزن با غلظت جیوه در بافت‌های مورد مطالعه تفاوت معنی‌داری وجود دارد (0.05) اما بین میزان جیوه در بافت‌های عضله، کبد، آبشش و بوست با فاکتور جنس هیچگونه رابطه معنی‌داری مشاهده نشد. مقایسه‌ای بین میزان جیوه عضله (ppb) و صورت غرفت، جیوه موجود در عضله از سطح آستانه FDA و WHO (70 ppb) و WHO (100 ppb) FDA (100 ppb) FDA و SANP (500 ppb)

لیست کلیدی: جیوه، سوف سفید، Sander lucioperca دریای خزر.

*نویسنده مسئول
سنجش جیوه در بافت‌های مختلف ماهی سوف سفید دریای خزر

طاهری آزاد و همکاران

مقدمه

جبهه از عناصر بسیار سلاحی در محیط زیست است و عملکرد
بصورت تصحری، نمک‌های پایین و دو طرفین و همچنین ترکیبات
آلی، بیوزی، کنیز جیوه بالغ می‌شود. ماهیان و استانداران قواره
مرطوب بالا را صرفه و مشابه به سبب ترکیبات مغذی
نمازی و سیاسی از نظریات قاره‌ای از قاره قدرت به قاره‌ایان
جیوه می‌باشد (اسماعیلی، 1341). جیوه که یکی از سه
فناز می‌باشد که آن‌ها در اکوسیستم‌ها آب را به
ارایه است و پیشینه ماهی که این افرادی به هم ادا
باید (Nriagu & Pancyna, 1988). با افزایش سطح آلوکسی در
زیست بومی آب، مقادیر اندازه‌گیری جیوه در ماهی به
Harakeh et al., 2003. نشان داد که این اثرات بر انسان مورد توجه است. این
عوامل مختلف شامل آب‌زدایی و اصلاحات طراحی ماهیان و
و در این پژوهش که اجرای آن باعث خسارت هوا و رفتار
افزایش می‌گردد. مقدار زیادی از این اکوسیستم‌ها
و چشمه‌ها به دلیل ترکیبات بهتری در بهره
و اکوسیستم‌های آبی به خصوص در حالی که قلب
سنجش ماهیانی که به دلیل تغییر در محیط
رورد و به کمک اکوسیستم‌ها آب شوند (Wicker et al., 1994).

سواحل ملی دریای خزر نیز از این قاعده منطبق

موارد و روش‌گاه

بر اساس اطلاعات موجود در مورد بیولوژی و رفتار مهاجرت
ماهی سوف سفید از دریا به طرف ساحل و مصوب رودخانه‌ها،
ماهیان سوف ساحل غربی دریای خزر (نام‌گذاری گروه
تالاب ازایی) به عنوان جامعه آماری انتخاب گردید و نمونه‌گیری
از این منطقه انجام گرفت. در مدت سال‌های 1384، 1385 و 1386، 21
نمونه ماهی سوف سفید با استفاده از صید پره صورت تصادفی
از منطقه مورد مطالعه تهیه گردید. نمونه‌های تهیه شده پس از
انجام زیست‌سنجی (Biometry)، مقدار نفوذ شدن و به آمیزشگاه (Biometry)
بافت‌های جدید شده چه تهیه شدن در دمای 65 درجه
سانتی‌گراد را تایید می‌کند همز تایید می‌کند که در
آون قرار داده شد. نمونه‌های خشک شده در بونه چند یک ترد
Advanced Mercury و گرفته شد. نمونه دهانی در نمونه
روش استاندارد شماره D-67223-6 آماده
 delloox 254, LECO

شانده و میزان جیوه کل پرساس (پنوم جیوه در هر نمونه
بافت سنجش شد.

در این تحقیق ترمز بولون داده‌های دست‌آمده با آزمون
کل‌پرساکسمیرنوف مورد بررسی قرار گرفت. برای افراد و

Farkas et al., 2003 (با چشمه‌های مختلف و در آب از همیان‌های
کامش ریز، تغییرات فیزیکی و شیمیایی آب (نوریه
pH) افکار بی‌پردازه کننده یا نیز مراکز و می‌ل ماهیان
به سبب نسبتاً و تماس به تجربه در زنجیره غذایی
موج‌های این بیانیات در مصرف ماهی گردن‌های (امینی زنجیر و

71
نتایج نشان داد که بین فاکتور جیوه و غلظت جیوه در باندهای کی، عضله، آبش و پوست تفاوت معنی‌دار وجود ندارد (P<0.05) اما بین فاکتور سن و غلظت جیوه در این باندها و اندماها تفاوت معنی‌دار وجود دارد (P<0.05) (نمودار 2). از این استفاده از آزمون دانکن ارتباط بین فاکتور وسیع و غلظت جیوه به‌رسی شد. در غلظت جیوه کید و آبش بین گروه‌های وزنی مختلف تفاوت معنی‌دار وجود دارد (P<0.05) بطوریکه با افزایش وزن غلظت جیوه در کید نیز افزایش می‌یابد. اما در آبش با افزایش وزن غلظت جیوه کاهش می‌یابد. در مورد پوست عضله و پوست اختلاف معنی‌داری بین غلظت جیوه در این باندها با فاکتور وزن دیده نشد (P>0.05) (نمودار 3).

با عدم وجود اختلاف معنی‌دار بین داده‌ها از آنالیز تجزیه واریانس یکطرفه (One way ANOVA) استفاده شد. برای تطبیق اختلاف معنی‌دار بین میانگین‌های غلظت جیوه در باندها و تیمارها، مختلف از آزمون دانکن با سطح اعتماد 5 درصد استفاده گردید. ارتباط بین غلظت جیوه در باندهای مورد مطالعه با فاکتورهای جنسی، سن و وزن نیز با آزمون دانکن با سطح اعتماد 5 درصد مورد آزمون فار و گرفت. تجزیه و تحلیل داده‌ها با استفاده از نرم‌افزار SPSS-12 انجام شد. نمودارهای مربوط به Excel نیز با استفاده از نرم‌افزار SPSS-12 انجام شد.

جدول 1: غلظت جیوه کل بر حسب ppb (وزن خشک) در باندهای ماهی سوف سفید

<table>
<thead>
<tr>
<th>فعالیت سیار</th>
<th>نهایی</th>
<th>تعادل</th>
<th>تعداد</th>
<th>غلظت جیوه</th>
<th>کید</th>
<th>آبش</th>
<th>پوست</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/01</td>
<td>0/02</td>
<td>0/03</td>
<td>0/03</td>
<td>0/23</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>0/01</td>
<td>0/02</td>
<td>0/03</td>
<td>0/03</td>
<td>0/23</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>0/01</td>
<td>0/02</td>
<td>0/03</td>
<td>0/03</td>
<td>0/23</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
</tbody>
</table>

نمودار 1: غلظت جیوه در باندهای مورد مطالعه ماهی سوف سفید براساس فاکتور سن (مقیاس درون گروهی و حروف لاتین مشابه نشان‌دهنده عدم تفاوت معنی‌دار و حروف مختلف نشان دهنده تفاوت معنی‌دار با سطح اعتماد 5 درصد با آزمون دانکن)
نمودار 2: مقایسه غلظت چربی در بافت‌های مورد مطالعه ماهی سوف سفید دریای خزر (مقایسه درون گروه و حروف لاتین مشاهده شان دهنده عدم تفاوت معنی‌دار دو خرф مختلف باشند.)

بحث

مطالعه حاضر نشان داد که چربی بیشتری تمایل به تجمع بترنده در کبد و انسداد در فاز خصی و انسداد و پوست دارد. بپارازی ماهی سوف سفید غلظت چربی در انسداد می‌تواند در کبد و کبد رود ماهی غلظت آن در پوست می‌باشد. در طبق این امر که این جامعه یا هر جامعه‌ای از انسداد‌ها است که قابلیت جذب بالایی نسبت به چربی در دارد (اسماعیلی 1381) که تحقیقات Sager (1923) و Jewett (1942) نشان داده‌اند. در سال 1400 می‌توان این جامعه در بافت‌های مختلف معنی‌داری دیده نشد در حالت‌های تأثیر فاکتور سر و جزئیات، فراز و Sager در سال 1406 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان دادند که بالا ترکم چربی در بافت‌های معنی‌داری وجود دارد. باید و Jewett در سال 1436 و Jewett در سال 1436 نشان D
مقادیر مشخص شده توسط سازمان‌های مربوطه که در بالاتر از آنها تاثیرات ناشی از جویش مشخص خواهد شد. اگرچه ممکن است در پایین از این مقادیر نیز جویه اثرات ناشی از مصرف رادریایه داشته باشد و هیچ سطح از مصرف این جویه می‌تواند مضرب از کمک می‌شود، با توجه به مقادیر سطح آسیب میزان جوش در بافت FAO، WHO ممکن است توسط سازمان بین‌المللی فناوری و این مقادیر بیش از میزان جوش محسوس شده در فاصله ماهی سوف مطالعه حاضر می‌تواند این نتایج نمود که مصرف این ماهی مخاطراتی از لحاظ سلولی برای عوامل بدنی ناوهای دریا است.

نتکر و قدردانی
تحقیق حاضر، حاصل همکاری پیشروی اشخاص و سازمان‌های شیلاتی می‌باشد. لذا از همکاری‌های صمیمانه برای محرز بررسی تحقیقات شیلاتی بندر اژدها، مسئول آزمایشگاه محیط زیست دانشکده منابع طبیعی منابع آب‌های مهندسی خدمتی کارشانس مرکز تحقیقات شیلات بندر اژدها و خانم مهندس میرم اوسوندی کمال تشورک را داریم.

منابع
اسماعیلی ساری ع. (1381). آنالیز پایه دو. تحقیقات و استاندارد 267.
صفحه
امینی رجبی، غ. و اسماعیلی ساری ع. (1384). تجمع فلنرات نسبت به بی‌جه‌های ماهی کیفیتی ماهی در ارتقاء برای مشاهدات بیوسیستمیک (طول Mugu می‌باشد). وزارت (اصنیادستانی) وزارت منابع آب‌های مهندسی. سال چهاردهم، شماره 2، پاییز 1384، صفحه 1-19.
صادقی، م.؛ امینی رجبی، غ.; علی، ع. و چوشیده، م. (1384). مقایسه تجمع فلنرات نسبت به (روی مسی، کادمیوم و نیکل) در بی‌جه‌های عضله خاویار و زور و رون (Acipenser persicus) تأسیس (آستراپیکس) خودوی در مهیج (Acipenser stellatus) و در بافت (Esox lucius) در طول (1384) از ماهی غار گزارش نمود. نتایج مقایسه میانگین غلظت جوشی در بافت‌های مختلف ماهی سی‌گول، فانویس، ارکد ماهی در حوزه جوزه دریای خزر با ماهی سوف این تحقیق نشان داد که به رغم کمیت کم‌تر ماهی سوف در اکوسیستم‌های ایران، در راس زنگ‌های از این جویه در بافت‌های مختلف ماهی نسبت به ماهیان دمک شده بسیار بالاتری را نشان می‌دهد، به طوریکه حتی در مقایسه با ماهی سوف نیز که رژیم غذایی بنزین‌خواری در این جویه در بافت FAO، WHO می‌تواند بسیار بالایی را نشان دهد.

مقایسه تحلیل از این تحقیق با مطالعات انجام گرفته
بر روی ماهی سوف جوشین دریای خزر (نام‌گذاری ایرانی: ازون، بر روی ماهی سوف، کالم، باغ، بحث کنی، گرم، گرم، گرم و گر
سنگین جیوه در بالانسیس ماهی سوپ سفید دریای خزر
طاهری آزاد و همکاران

فروغی ر.؛ اسماعیلی ساری، غ. و قاسمی‌نوری، م. , 1385. مقایسه میکستیک طول و وزن با تراکم جیوه در اندام‌های مختلف ماهی سفید سواحل مرکزی خزر جنوبی مجله علمی شیلات ایران، سال پانزدهم، شماره 47، ماه‌نشت، صفحات 148-155.

نوزدهم، م. , 1384. اندازه‌گیری و مقایسه غلظت جیوه در اندام‌های مختلف اردک ماهی (Esox lucius) در تالاب انزلی. پایان‌نامه کارشناسی ارشد. گروه محيط دانشگاه منابع طبیعی و علوم دریایی نور، دانشگاه تربیت مدرس، صفحه 112.

یزدانی، ل. , 1384. سنگین جیوه در بالانسیس ماهی کالا طالنی (Liza aurata) سواحل غربی استان مازندران. پایان‌نامه کارشناسی ارشد. گروه بیولوژی دریا، دانشگاه منابع طبیعی و علوم دریایی نور، دانشگاه تربیت مدرس، صفحه 59.

A study of mercury concentration in organs of

Zander fish (Sander lucioperca) in the Caspian Sea

Taheriazad L.(1) ; Esmaili Sari A.(2) and Rezaei Tavabe K.(3)
ltaheriazad@yahoo.com

1,2- Faculty of Natural Resource and Marine Science, University of Tarbiat Modarres, P.O.Box: 14155-356 Noor, Iran
3- Research Center of Living with Desert, Tehran University, P.O.Box: 34145-195 Semnan, Iran

Received: February 2007 Accepted: June 2008

Keywords: Mercury, Zander Fish, Sander lucioperca , Caspian Sea

Abstract

We studied mercury bioaccumulation in liver, gill, skin and muscle of Zander fish and its relationships with weight, age and sex factors and compared the results with world standard levels. We collected 21 specimens of the fish in winter 2005 from south west Caspian Sea inshore waters stretching from Jefroud fishery station to Anzali wetland. We conducted biometrical measurements and sex determination and studied mercury concentration in different organs of the fish using Advanced Mercury Analyzer apparatus. Based on the results, the mercury concentration in muscle, liver, gill and skin as ppb per dry weight were 0.097±0.014, 0.338±0.097, 0.093±0.011 and 0.035±0.007, respectively. The results showed significant differences between age and weight factors and mercury accumulation in studied organs (P<0.05) while sex factor had no significant difference in terms of mercury concentration (P<0.05). The comparison of the mercury bioaccumulation with universal standard threshold levels (WHO, FAO and FDA) showed lower concentration than authorized for mercury.

* Corresponding author