چکیده
ارزیابی برخی از واکنش‌های فیزیولوژیک ارقام حساس و منتحل پنه در شرایط نش خشکی

حمید رضا آبادی (1)، احمد نظامی (2)، محمد کاوی (3)، محمدرضا رمضانی مقدم (4)

این تحقیق نش نش خشکی و پاتی، مرکز تحقیقات کشاورزی و منابع طبیعی استان خراسان رضوی، سازمان تحقیقات، امورش و ترویج کشاورزی، مشهد، ایران، 1390 استاد دانشکده کشاورزی دانشگاه فردوسی مشهد، گروه رئیس و صلاح نبانی، استاد دانشکده کشاورزی و منابع طبیعی استان خراسان رضوی، سازمان تحقیقات، امورش و ترویج کشاورزی، مشهد، ایران.

تاریخ دریافت: 1396/1/21، تاریخ پذیرش: 1396/4/13

ارزیابی واکنش‌های فیزیولوژیک منشا ارقام پنه در شرایط نش خشکی روشن و دقت و مطمئن جهت پاپر و شکر که یک آب و پودر می‌تواند در جهت اصلاح ارقام منتحل به خشکی بکار رود. لذا این پژوهش برای ارزیابی کنترل روزنهای دمای برق و کانوی و همچنین حداکثر کارایی فتوسیستم (ΔF/Fm) بر روی چهار رقم پهن حساس (کوکر 232 و نازیبی 20) و منتحل (ارامگان و پوراین) به خشکی انجام گرفت. ارقام پنه به عنوان کرتهای فرعی در سه سطح آب مصرفی به عنوان کرتهای اصلی (بابی) به میزان (I100) (I60)، (I30)، (I0) نیاز کرده عبوری کردهای خرد شده در قابل بلک‌های کاملاً تصادفی در سه تکرار در مزرعه استفاده تحقیقات کشاورزی کمشر در سال 1390 مورد ارزیابی قرار گرفتند. نتایج نشان داد به دنبال نش خشکی، میزان واکنش مقاومت روزنهای ارقام منتحل بیشتر از ارقام حساس در شرایط بود. همچنین نش خشکی سبب افزایش معنی‌دار دمای برق در دمای برق در حداکثر مناطق دارا بر این شاریت ارقام حساس در شرایط بود. نتایج نشان داد که اگر ارقام منتحل بود. نتایج همچنین تغییرات دمای برق با افزایش مقاومت روزنهای در ارقام حساس بیشتر از ارقام منتحل بود. نتایج همچنین بیانگر نشان داد ارقام مناطق دارا بر این شاریت ارقام حساس که افزایش دمای برق ارقام مناطق دارا بر این شاریت ارقام حساس که افزایش دمای برق ارقام مناطق دارا بر این

واژه‌های کلیدی: نش خشکی کم‌دره، دمای برق، حداکثر کارایی فتوسیستم II، مقاومت روزنهای

hr.mehrabadi@yahoo.com

نویسنده مسئول: hr.mehrabadi@yahoo.com
مقدمه

تشنج خشکی که یکی از جالب‌ترین جهانیت چندین موانع پیش رو تولید می‌شود، از دو وجه می‌باشد (بل حسن و همکاران، 1396). به‌طور گیری از ارقام منحل به تنش‌های محیطی با تولید مطلوب، یکی از رکن‌های مهم رستگاری به کشاورزی پایدار است. اگر شناخت اختلاف بین ارقام منحل و حساس به تنش‌های محیطی امکان اصلاح و بهبود گیری مطلوبی از ارقام در شرایط ناشی از گزارش نمایندگی می‌باشد، به‌طور گسترده‌ترین اثر این تنظیم‌های می‌باشد. فیزیولوژی گیاهی چنین میزان هداوت روزنهای و فتوسنتز و با تغییرات فلورانس کلروفیل برگ ضمن پایین‌گرفتن قرار می‌گیرد. این تغییرات در شرایط میزان عوامل به‌طور متعادل از دو پایه شدن روزنهای و کاهش فعالیت آنزیم‌های فتوسنتز می‌باشد (بیت و همکاران، 2003، و همکارانی، 2002، و همکارانی، 2001). به‌طور معمول، در میزان هدايت روزنهای در طول روز علت عدم تغییرات میزان فتوسنتز در گیاه بینه‌بود. کاهش سرعت فتوسنتز در شرایط محدودیت آب در یکی از پایه‌های گزارش‌های است (فراچد و لیبری، 2003، پتیرگری، 2004). نتایج دیگر و همکاران (2012) نشان داد که با افزایش شدت تنش خشکی مقدار فتوسنتز خاص، هدايت روزنهای و تعرق پایین‌تر کردن. علاوه بر این، میزان هدايت روزنهای و تعرق در گیاه نیز تاثیر کاهش مشابهی را نشان داده‌های روزنهای در محتوای نسبی آب برگ 75٪ بیشتر از ۴۰٪ کاهش باید در حالتی میزان کاهش برای محتوای نسبی آب برگ ۵۰٪ درصد و در WRC ۹۵٪ باشد درصد کاهش نشان داد (بیت و همکارانی، 2003 و همکارانی، 2002، و همکارانی، 2001).}

پایه‌بندی که در شرایط ناشی از گزارش نمایندگی می‌باشد، به‌طور معمول، در میزان عوامل به‌طور متعادل از دو پایه شدن روزنهای و کاهش فعالیت آنزیم‌های فتوسنتز می‌باشد (بیت و همکارانی، 2003، و همکارانی، 2002، و همکارانی، 2001). به‌طور معمول، در میزان هدايت روزنهای در طول روز علت عدم تغییرات میزان فتوسنتز در گیاه بینه‌بود. کاهش سرعت فتوسنتز در شرایط محدودیت آب در یکی از پایه‌های گزارش‌های است (فراچد و لیبری، 2003، پتیرگری، 2004). نتایج دیگر و همکاران (2012) نشان داد که با افزایش شدت تنش خشکی مقدار فتوسنتز خاص، هدايت روزنهای و تعرق پایین‌تر کردن. علاوه بر این، میزان هدايت روزنهای و تعرق در گیاه نیز تاثیر کاهش مشابهی را نشان داده‌های روزنهای در محتوای نسبی آب برگ 75٪ بیشتر از ۴۰٪ کاهش باید در حالتی میزان کاهش برای محتوای نسبی آب برگ ۵۰٪ درصد و در WRC ۹۵٪ باشد درصد کاهش نشان داد (بیت و همکارانی، 2003 و همکارانی، 2002، و همکارانی، 2001).
اداگری پارامترهای فلورسانس کروفیل ازای قدرتمندی برای مطالعه واکنش گیاه به نشانه‌های محیطی می‌باشد (مکسول و جانسون، 2000، فراچوند و لیبیر، 2003). اندراگری پارامترهای فلورسانس کروفیل یک روش مناسب و غیر تخریبی است که به دفعات جهت تعیین تفاوت‌های موجود بین گونه‌های گیاهی استفاده می‌شود (دوربیسکی و همکاران، 2005). پارامتر حداکثر کارایی فتوسیستم II (ویبری، 2007) به عضوی اصلی ترین فاکتور بین پارامترهای مورد بررسی کاربرد دارد و مقادیر این فاکتور برای یک گیاه سالم بین 0/20 تا 0/85 طی اکسترا نش تنضیم توزیعی نشان داده می‌باشد. در حالی که در اثر نش تنضیم توزیعی در حالت ناحیه‌ای فعالیت (فتوسیستم II) برای محافظت از سرماخوردگی نور اضافی و همچنین بوسیله پراکنش دمای بالای گر در بین می‌بند (اینامول، 2005). تحلیل داده‌های فلورسانس کروفیل گیاه می‌تواند نشان دهد که در منطقه مطالعه فتوسیستم II (α فتوسیستم II) بین تنجه‌های غیر شرایط نش باید مشخص نشود که کارایی کواناتومی فتوسیستم II گاهی نش طبیعی با کارایی کواناتومی تعیین گرایش کردن تحت شرایط نش خشکی کاهش می‌یابد (کیانلو و لی، 2007). واقع و همکاران (2007) نشان دادند که با افزایش نش خشکی، عمکرک واقعی کواناتومی فتوسیستم II کاهش یافته کردند. در حالی که در حالت ناحیه‌ای فعالیت (فتوسیستم II) بین تنجه‌های غیر شرایط نش باید مشخص نشود که کارایی کواناتومی فتوسیستم II مربوط به کاهش نش از فرآیندهای فرآیندهای فتوشیمیایی (ν) می‌باشد. با بکارگیری مکانیزم‌هایی تلف کننده انسدادی (Fν/Fν) در دوره‌های طولانی مدت نش خشکی (کیانلو و لی، 2007). با این حال تحت شرایط خاصی کارایی کواناتومی
The image contains a page of text written in a language that appears to be a mixture of Persian and English. Due to the quality and formatting of the text, it is challenging to transcribe accurately. However, some key elements can be identified:

- The page includes mentions of scientific equipment, such as "Chlorophyll Fluorometer" and "Quicktemp 850-1".
- There are references to measurements or data, indicated by symbols such as $\Delta F/F$.
- The text appears to discuss experiments or results related to biological or environmental sciences.

Due to the quality of the image, a precise transcription is not possible without the use of specialized OCR technology designed for Persian text. If you require a more detailed transcription, please consider the use of such software or alternative methods of text capture.
نتایج و بحث

مقاومت روزنه‌ای: کاهش آب مورد نیاز بینه موجب افزایش معنی‌دار (p<0.05) میزان مقداری روزنه‌ای برگ‌ها شد. (جدول 1) و ۲. کاهش هدایت روزنه‌ای با عکس آن افزایش مقدار روزنه‌ای برگ بود. این نتایج ممکن است نشان دهنده افزایش وابستگی به دفعات وابستگی کم‌هوش گزارش شده (ماسکی و همکاران، ۲۰۰۸) و همکاران، ۲۰۰۹؛ دیبا و همکاران، ۲۰۱۲). نتایج نشان داد افزایش شدنش خشک‌سازی و دیمان (I100%) مقداری روزنه‌ای برگ‌ها نسبت به شاهد شد. افزایش شدنش خشک‌سازی در دیمان (I100%) مقداری روزنه‌ای را به میزان کمتری نسبت به نش خشکی اولیه (تیمار I0%) افزایش داد و نسبت به نیمی شاهد افزایش ۴۸ درصدی را نشان داد.

در بی‌نش خشکی و کاهش خشکی افزایش این گیاه برگ‌ها با دست دادن تدریجی محتماً آب نسبی خود از حالات آب‌رون آمده و زمان بندی شدند. به همین ترتیب بروز نش خشکی محیطی است، در این ارتباط نتایج دیده و همکاران (۲۰۱۲) نشان داد که با افزایش شدنش نش خشکی مقادیر فتوسنتز محسوب شده و تعریق کاهش بی‌پایان شده. به گونه‌ای که هدایت روزنه‌ای در محتمال آب نسبی برگ ۷۵% بیشتر از ۴۰ درصد کاهش یافته در حالی که میزان کاهش بیاین در نهایت آب نسبی برگ ۵۰% بیشتر از ۴۰ درصد و در محتمال آب نسبی برگ ۳۵% با ۹۰ درصد کاهش نشان داد. و اگر همکاران (۲۰۰۶) نشان دادند علی‌رغم کاهش محتمل نسبت آب آب گیاه پنهای افزایش شدنش خشکی با این وجود تغییرات بوجود آمده در محتمال آب آب برگ‌ها ناجی بود. این موضوع می‌تواند نشان‌دهنده باعث مقایسه گیاه پنهای در حفظ میزان آب برگ در گیاه پنهای می‌باشد.

زنوشته‌ها و مورد بررسی از نظر میزان مقدار روزنه‌ای معنی‌دار (p<0.05) را نشان دادند (جدول ۱). میزان مقدار روزنه‌ای ارقام متحمل به شکل ۲۴ دیم قاب دیمان در ارقام حساس بود. بیشترین میزان مقادیر روزنه‌ای معنی‌دار به رقم ارقام و کمترین مقادیر روزنه‌ای متعلق به رقم کوکر ۳۴۹ بود (جدول ۲). رقم ورامین دارای حد متوسطی از مقادیر روزنه‌ای نسبت به سایر ارقام بود.
مجله بیوزه‌های نیمه‌بی‌ Thorn (5) شماره (1)، 1396

بر همکنش شیمی‌های تشخیص و ارقام پتیه مغذی (p5) (جدول 1) بالاترین واکنش به تشخیص خشکی در ارتباط با مکانیزم تنظیم روزنامه متعلق به رقم ایرانی بود. اعمال تشخیص خشکی در این رقم موجب زنگ تا مقامات روزنامه در تیمار (I1396) به میزان 276 درصد و در تیمار (I1396) به میزان 276 درصد نسبت به شاهد افزایش بی‌بِیدا نماید. در حالی که تنش خشکی کمترین تأثیر را بر میزان تغییرات مقامات روزنامه رقم کوکر 349 بلای گذشت. بهطوریکه اعمال تیمار خشکی 272 درصدی مقامات روزنامه و تیمار خشکی (I1396) سبب افزایش (جدول 1) درصدی مقامات روزنامه و تیمار خشکی (I1396) و شدید (I1396) حاکی از افزایش 346 درصدی مقامات روزنامه نسبت به شرایط آبیاری کلی و بود.

دمای بروک و کانووی

یکی از تغییرات کاهش‌های روزنامه‌ای در اثر تنش خشکی کاهش تعقیب و محدودیت پراکنش گرمای اضافی توسط تعرق می‌باشد. از این‌رو انگار می‌رود دمای برج تحت شرایط تنش خشکی افزایش یابد. در این حیص نتایج حاکی از افزایش معنی‌دار (p<0.05) میانگین دمای برج میانگین غلظت میانگین (G) در تیمار (I1396) و دامای برج بر دهنده سانتی‌گراد در تیمار (I1396) و دمای برج در جدول 1 درصدی دمای برج به ترتیب در سطوح آبیاری 67 و 33 درصد نیاز آبی نسبت به گیاهان شاهد بود. افزایش دمای برج در اثر هدایت روزنامه تحت تنش خشکی توسط محققون نادیده شده است (فاکنکرک و همکاران، 2012). ولکن و همکاران (1996) مشاهده نمودند دمای برجهای منفرد گیاه پنبه با پرورش هدایت ناشی از خشکی افزایش و با افزایش براک کاهش پیدا کرد. افزایش دمای کانووی بهبودی بدنیال کاهش سطح آبیاری
محتویات در بدنه، بطوری که داده در تا 20 قدم در سطح آبی 32 درصد نیاز آب افزایش نمی‌شود.

هدایت روزانه‌ای پیش‌تر در رقم کوچک 249 موجب شد تا گیاه با شدت پیش‌تری نسبت به سابین ارقام تعریق نموده و سرعت گیر از یک درصد. از این رو، دنا روش‌الاحاف برای نوری اضافه دریافت شده در شرایط عدم توانایی درگیر کننده فوتون‌های مزار در سیستم فتوسنتزی، تلفات به صورت افزاینده گرمایی و نیز فلورسنس کلروفیل است. از این رو، می‌توان ارقام ارتفاع بطور معنی‌داری بالاتر از دو رقم دیگر بود (جدول 3). علاوه بر این همبستگی بین رابطه بین مقاومت موضعی با دمای برق به‌طور آماده (شکل 3) و پاکتندی نتایج حاصل از برازش این دو پارامتر نتیجه آبیت کرده، این داده ارقام مورد بررسی در این تحقیق بود. در این ارتباط نتایج نشان داد اعمال تنش خشکی سبب تغییرات متفاوت و معنی‌دار (p≤0.05) در دمای برق ارقام مورد بررسی شد. ارقام مورد بررسی از نظر تغییر در دمای برق تحت شرایط تنش خشکی و آبیت نسبتاً متفاوتی را نشان دادند. توجه به نتایج بدست آمده مؤید این نکته است که اختلاف دمای برق ارقام در شرایط نماینده نشان از ارتباط با میزان تنش خشکی هدایت روزنامه‌ای آنها نبوده و عامل دیگری جوئن میزان انعکاس نور از سطح برق (علت) تفاوت موجود در میزان کرک ارقام و نیز توانایی در ارقام در شرایط تنش خشکی در این امر دینامیک می‌باشد. بنابراین حاصل برای متوسط شیب افزایش دمای برق با افزایش صدا تنش در ارقام حساس نسبتاً پیش‌تر از ارقام متصل در این تحقیق بود (شکل 3). همبستگی بین مقاومت موضعی با دمای برق در ارقام مورد بررسی (شکل 4) حاکی از وجود نتیجه ارتباط با تغییرات دمای برق با استفاده از مکانیزم تنظیم روزنامه و دیگر روش‌های احتمال نوزنامه تغییر خشکی و پیچیدگی برق و میزان گردد کدشن آن باشد. بنر می‌رسد نتایج معنی‌دار دمای کانالی مشاهده شده در ارقام مختلف پپه ناشی از تفاوت‌های مولکولیک و رشدی ارقام پپه و نتایج آن بر سطح سایه انداد و نتیجتاً میزان تبخیر و تعرق باشد.

فلورسنس کلروفیل

نش خشکی سبب کاهش معنی‌دار (ΔF/Fm) در حداکثر کارایی فتوسنتز (p≤0.05) شد (جدولا 1). بطوریکه با کاهش آبیاری به میزان 66 درصد نیاز مصرفی پنبه، حداکثر کارایی فتوسنتز II (Fv/Fm) از 0.69 به 0.63 رسید. این موضوع نشان دهنده کاهش 410 درصدی حداکثر کارایی فتوسنتز در نتیجه اعمال تنش خشکی می‌باشد. افزایش تنش خشکی با آبیاری به میزان 37 درصد نیاز آبی پنجه موجب شد تا عده حداکثر کارایی فتوسنتز II به 0.53 تقیف یابد. بنر می‌رسد نتایج معنی‌دار دمای کانالی مشاهده شده در ارقام مختلف پپه ناشی از تفاوت‌های مولکولیک و رشدی ارقام پپه و نتایج آن بر سطح سایه انداد و نتیجتاً میزان تبخیر و تعرق باشد.
عملکرد و شاخص‌های آن مربوط به افزایش میزان مقاومت روزنه‌ای و دمای برق و کاهش میزان کاراپی فتوشیمیایی فتوسیستم II در گیاه کاهش بی‌پدید کرد. نشانگر میزان قابل قبولی و این موضوع باعث می‌شود تا این رقم در طی در هر دوره آبیاری بی‌پدید در دوره حداکثر نیاز این نیمه اول تیر ماه تا اواخر مرداد ماه که مصداق با غروب بندی پنجه می‌باشد، نماوند خشکی را تحمیل نموده، برگاها به دلیل تغییر زیاد اساس خود را در دست داده و بی‌پرده شوند، عامل مهمی که می‌تواند متعاقباً به کاهش فتوسنتز خالص انجامده و یا افزایش عملکرد را در بی‌داشت باشد. علاوه بر این روابط بین عملکرد و صفات مورد اشاره نشان داد که افزایش دمای برق موجب کاهش معنی‌دار عملکرد پنجه شد (شکل 8). بالاترین مقدار عملکرد در دامنه دمایی 24 درجه سانتی‌گراد بوده است. بر اساس معادله بندپر آمده از رابطه فوق‌الذکر به نظر می‌رسد افزایش دمای برق به 40 درجه سانتی‌گراد سبب کاهش شدید عملکرد شود. همچنین مشخص شد که با کاهش حداکثر کاراپی فتوسیستم II در نتیجه نشان‌کننده عملکرد بطور معنی‌داری به صورت خفیفی کاهش می‌یابد (شکل-8). دامنه حداکثر کاراپی فتوسیستم II بین 5/1 تا 7/25 به‌ترتیب مقدار عملکرد و شاخص روزنه‌ای دیده نموده. یا این وجود رابطه مشخص معنی‌دار بین عملکرد و مقاومت روزنه‌ای بدست نیامده.

جدول 1: محاسبه درجه آزادی و میزان‌های مربوط به مقدار روزنه‌ای، دمای برق و کاهش کاراپی فتوشیمیایی فتوسیستم II و عملکرد پنجه

<table>
<thead>
<tr>
<th>عملکرد</th>
<th>حداکثر کاراپی فتوسیستم (AF/Fm) II</th>
<th>دمای كاهشی</th>
<th>دمای برق</th>
<th>مقدار روزنه‌ای</th>
<th>درجه آزادی</th>
<th>اعداد تغییر</th>
<th>منابع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>عملکرد</td>
<td>غلبه 81/1205</td>
<td>23/372</td>
<td>127/324</td>
<td>2/324</td>
<td>124/324</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>کاهش</td>
<td>سطح آبیاری</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>برق</td>
<td>خطای</td>
<td>1/485</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>درجه آزادی</td>
<td>پنجه</td>
<td>7/324</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>مقدار تغییر</td>
<td>ضریب تغییرات</td>
<td>8/324</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
جدول 2: مقایسه میانگین صفات مقاومت روزنه‌ای، دمای برق و کانویی، چارکاری فتوشیمیایی فتوسیستم II و عملکرد پنبه در تیمارهای آبیاری و در ارقام مختلف پنبه

<table>
<thead>
<tr>
<th>تیمار</th>
<th>مقدار کاراکتر فتوسیستم (AF/Fm) II</th>
<th>دمای کانویی (°C)</th>
<th>دمای برق (°C)</th>
<th>مقاومت روزنه‌ای (s/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1396</td>
<td>0.546</td>
<td>37.4</td>
<td>27.8</td>
<td>2122/7</td>
</tr>
<tr>
<td>1397</td>
<td>0.423</td>
<td>31.7</td>
<td>30.0</td>
<td>1693/3</td>
</tr>
<tr>
<td>1398</td>
<td>0.479</td>
<td>29.3</td>
<td>21.1</td>
<td>1483/2</td>
</tr>
<tr>
<td>1399</td>
<td>1.00</td>
<td>3/2</td>
<td>3/2</td>
<td>1490/1</td>
</tr>
<tr>
<td>1400</td>
<td>0.5/0</td>
<td>3/2</td>
<td>3/2</td>
<td>1490/1</td>
</tr>
<tr>
<td>LSD(0.05)</td>
<td>0.149</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1401</td>
<td>0.631</td>
<td>31.8</td>
<td>21.8</td>
<td>2180/2</td>
</tr>
<tr>
<td>1402</td>
<td>0.565</td>
<td>29.7</td>
<td>1587/3</td>
<td></td>
</tr>
<tr>
<td>1403</td>
<td>0.288</td>
<td>31.5</td>
<td>1433/8</td>
<td></td>
</tr>
<tr>
<td>1404</td>
<td>0.433</td>
<td>31.1</td>
<td>1817/6</td>
<td></td>
</tr>
<tr>
<td>1405</td>
<td>0.433</td>
<td>31.1</td>
<td>1817/6</td>
<td>115/8</td>
</tr>
<tr>
<td>LSD(0.05)</td>
<td>0.184</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل 1: اثر مقایسه میانگین آبیاری بر اساس نیاز آبی پنبه بر میزان مقاومت روزنه‌ای (s/m)

\[
y = 0.0034x + 24.759 \\
R^2 = 0.3795
\]
شکل 2: اثر مقادیر مختلف آبیاری بر اساس نیاز آبی پنیه بر دما و میزان مقاومت روزنه‌ای برگ

$y = 0.003x + 25.347$
$R^2 = 0.4201$

شکل 3: رابطه بین مقاومت روزنه‌ای و دمای برگ
شکل ۴: رابطه بین مقاومت روزنهای اولی مدلی با رنگ در ارقام پنجه

$y = 0.0107x + 13.291$
$R^2 = 0.648$

$y = 0.0166x + 10.598$
$R^2 = 0.7655$

$y = 0.0091x + 13.217$
$R^2 = 0.9854$

شکل ۵: رابطه بین مقاومت روزنهای و دمای پرگ در ارقام پنجه

$y = 0.0107x + 13.291$
$R^2 = 0.648$

$y = 0.0166x + 10.598$
$R^2 = 0.7655$

$y = 0.0091x + 13.217$
$R^2 = 0.9854$
شکل ۶: رابطه بین دما برگ و پ (ب) مقاومت روزنه برگ

شکل ۷: اثر مقادیر مختلف آبیاری بر اساس نیاز آبی پنبه برمکرد و ش آرم ق مختلف پنبه

(ممانگین‌های دارای یک حرف مشترک در سطح احتمال ۵ درصد اختلاف معنی داری دارند)
نتیجه‌گیری

وجود طیف گسترده‌ای از تنوع فنوتیپی و زنوتیپی در تربیت شده است تا ارقام تربیت شده است. هر فلورسکاپ کارولی و در نهایت نمایش دایم برگ باشد. مجموعه این عوامل بعثطور مستقیم و غیر مستقیم بر میزان تبادل دی اکسید کربن و نتیجه‌گیری بر عملکرد ناگفتنی در این خصوص نتایج بدست آمده نشان داد اولان تنش خشکی منجر به تغییر صفات فوق شده و ثانیاً میزان این تغییرات در ارقام متحمل و حساس به خشکی متفاوت بود. بگونه‌ای که ارقام متحمل در شرایط تنش خشکی هدايت روزنهای خود را در مقایسه با ارقام حساس به میزان بیشتری کاهش دادند و از این نظر از محتمل‌ترین آب برگ بالاتری برخوردار بودند. با این وجود ارقام متحمل با توجه به وزن‌های برگ خود نویاچی تعیینی نمایش دایم برگ بیشتری را در مقایسه با ارقام حساس داشتند، به صورتی که بطور

