بررسی فنولوژی و عملکرد ارقام پنبه لطیف و گلستان (Gossypium hirsutum L.)

نحو تأثیر نژاد کاشت و کود نیتروژن

لیلا صابرپور۱، مجید مهدوی دامغانی۲، سعید صوفی زاده۲، قربان قرمانی نصرآباد۲

جعفر کامبوزی۱

چکیده

بنیه به عنوان یکی از محصولات زراعی مهم در کشور از گلستان و در ایران برخوردار بوده و برای
رسبیدن به خودکافی الیاف، نیاز به افزایش تولید آن می‌باشد. آزمایشی مزروعه‌ای در سال ۱۳۹۵ در
مزرعه تحقیقاتی ایستگاه تحقیقات پنبه هاشم آباد گرگان، بهصورت اسپلتی پلاست فاکتوریل در قالب
طرح پلک‌های کامل تصادفی انجام شد. تیمارهای آزمایش شامل تک کاشت (۸ تیمار) و ۳۱ تیمار
به عنوان فاکتور اصلی و ترکیب فاکتوریل رقم (لطفی و گلستان) و کود نیتروژن (شامل‌سیم سطح
مطوب، یک سوم حد مطلوب و بدون کود) بودند. سطوح کودی در حال مطلوب حدود ۱۶۰ کیلوگرم
در هکتار، و در حالی که سوم حد مطلوب ۴۵ کیلوگرم در هکتار بوده و مصرف قابل رشد و در مراحله
رسیدگی فیزيولوژیک اقدام به افزایش عملکرد و اجزای عملکرد گردد. همچنین زمان وقع مراحل مهم
فیزیولوژیک کاهش و تیمارهای مختلف کاشت و سطح مختلف کود
نیتروژنی در اکثر صفات فیزیولوژیک، عملکرد و اجزای عملکرد ارقام لطیف و گلستان معمول (۵/۵۰)
بهبود. رقم گلستان در نژاد کاشت اول (۸ تیماره) بیشترین عملکرد و شکل‌های مختلف نژاد را به
و تعداد غوزه در متر مربع (به‌ترتیب ۲۷۸/۲۷۷، ۲۷۶/۹ و ۴۴۲ کیلوگرم در هکتار و ۱/۱۸ غوزه در متر
مربع) بیشتری داشت. بیشترین عملکرد الیاف و تعداد غوزه در متر مربع نیز در سطح کودی شاهد (با
عملکرد الیاف ۲۷۸ کیلوگرم در هکتار و ۲/۳۱ غوزه در متر مربع) مشاهده شد که افزایش سطح کودی
از صفر به ۱۶۰ کیلوگرم در هکتار کاهش یافته که دلیل این امر اثر کود نیتروژن بود. نتایج نشان داد در تأثیر کاشت اول ارقام لطیف و

ssoufizadeh2004@yahoo.com

نویسنده مسئول:
گسترش گیاهان زراعی با توجه به اینکه منبع اصلی تغذیه انسان و همچنین علوفه برای پرورش دام می‌باشد از جایگاه ویژه‌ای در تمایل کشورها از جمله ایران برخوردار هستند (لانگ و همکاران، ۲۰۰۶). در سال ۱۳۹۵، در جستجوی بیشتری برخورداری از هم‌باشی گیاهان، جستجوی گیاهانی از اهمیت بیشتری برخوردار هستند به گونه‌ای که تعداد گیاهان افزایش یافته و از تعداد گیاهان (گاگاس و همکاران، ۲۰۰۹) به ۹۰ درصد نیازمندی‌های انسان را تامین می‌کند. نسبت به گیاهان، گیاهان از ۱۰۰ درصد سهولت‌های یکی از مهم‌ترین و قدمی‌ترین گیاهان لیفی است که در ۹۱ کشور جهان کشت می‌شود و یکی از گیاهان مناسب برای کشت در مناطق خشک و نیمه‌خشک می‌باشد (کشلا، ۲۰۰۶). بنیه بعد از سوا و دیگری رونقی متوسط در دنیای شرکت می‌رود (سیماری و همکاران، ۲۰۰۶). گیاهی با بروز الگو و وابستگی افتاده خانواده بسیاری از گیاه‌های جهان به زراعت، تولید و فرآوری این محصول، جایگاه بنیه را در دنیای جهانی ویژه کرده است (آکرم قادیری و همکاران، ۲۰۰۷). بنیه به عنوان یکی از محصولات زراعی مهم در ایران از جایگاه ویژه‌ای برخوردار بوده و بازی در استراتژی حفظ گیاهان و سطح تولید این محصول بر کسی بویشیده نیست. بنابراین با توجه به کاهش سطح زیر کشت بنیه در ایران و تغییر الگوی کشت این محصول در مناطق مختلف کشور، باید به است خواندن سطح تولید و تامین نیازهای صنایع کشور مستلزم انجام پذیرش‌های کاربردی این اهداف افزایش عملکرد این محصول می‌باشد (آکرم قادیری و همکاران، ۲۰۰۱). عوامل بسیاری در تولید عملکرد مطلوب بنیه نقش دارند که در این مقاله نیز کاشت و محصولات مورد نیاز گیاه و اثر متقابل آنها بر یکدیگر مطالعه شده و بسیاری از اجزای عملکرد بنیه
دانست. در میان عناصر غذایی ضروری هر گیاه، نیتروژن مهم‌ترین عنصر (با توجه به میزان نیاز گیاه به آن عنصر) می‌باشد. باکتری‌ها و دی‌کامیت و استفاده کارآمد از گونه‌های نشیمنه و همکاران، نیترئوژن، می‌توانند کارآمد استفاده از نیتروژن‌های داشته باشند و از جایگزین کرایی مصرف نیتروژن نشان دهنده توانایی گیاه در استفاده از نیتروژن مصرفی است. باکتری‌ها و دی‌کامیت زیر آغشته کرایی استفاده از نیتروژن‌های محیطی و افزایش بهره‌وری آن مؤثر باشد (اولیپوراها و همکاران، 2006). معتقد به یکی از کرون نیتروژن و تعیین مقدار کرون مورد نیاز به منظور نامنای نیاز رشدی گیاه، می‌تواند موجب کاهش آنزیم‌های کرن نیتروژن و در نتیجه افزایش کرایی استفاده از ابن عنصر شود (گناه و همکاران، 2016). به‌همان‌دست اکثر گیاهان زراعی، نقص کرایی مبتنی بر یکی از تغذیه زیادی دارد. از طرف دیگر، اختصاص نیتروژن کمیت از مقدار مورد نیاز باعث کاهش محصول و مصرف نیتروژن به‌این باعث آفتابش رشد روی‌شده و کاهش کیفیت یافته به نقش می‌آید (داناگ و همکاران، 2012). مقدار نیتروژن مورد نیاز باید در تمام شرایط و در ارتفاع مختلف ثابت نمی‌شود و به طور عمده تابع مقدار نیاز باید شده معمولاً با از طریق افزایش در تعداد اندازه‌ای رابطه و با بررسی حفظ و تکنیک‌های تغذیه اختصاصی از آن که علاوه کاهش درصد ریزش گنجه، گل و غزه محسوس و شب و پنجه را افزایش می‌دهد (داناگ و همکاران، 2012). (سیم و همکاران، 2006) با بررسی دو سطح کود 60 و 140 کیلوگرم در هکتار بر عملکرد پنبه رقم‌بندی نشان داد که تفاوت عملکرد بین آن دو سطح کودی از نظر آماری معنادار به دست آمد. محمد و همکاران (2005) با بررسی سه سطح کود نیتروژن 50، 75 و 100 کیلوگرم در هکتار گزارش کردند که در نیم‌های 50 و 75 کیلوگرم در هکتار به 13/31 و 12/31 درصد عملکرد پنبه دانه نسبت به تیم‌یار 25 کیلوگرم در هکتار افزایش یافت.

هما مهم‌ترین عامل تغییر کندنی طول دوره رشد در گیاهان زراعی است (بیبند و همکاران، 2010). تاریخ کشت گیاهان می‌بایست بر اساس عکس عمل آن‌ها نسبت به آن تنظیم گردد و تاریخ کشت نامناسب منجر به برخورد دوران رشد روی‌شده، راهپیمایی با ماهیت اتفاقی و بهره‌وری می‌گردد. با توجه به صرف خردبزین به گیاه پنبه که درجه ساتنی گرداشتن پنبه به دو متر وتر در عمق 30 سانتی‌متری بین 15 تا 18 درجه ساتنی گرداشتن پنبه (ناصری، 1995) با توجه به دوره روانی طولانی پنبه (150 تا 200 روز)
برای جلوگیری از دیررس شدن پنجه بهتر است در اولین موقع که امکان کاشت فراهم می‌گردد در مدت کوتاهی با دوکاری انجام شود.

قانعی تفرشی (۲۰۰۸) گزارش کرد یکی از مزایای کاشت مناسب، ایجاد تطبیق زمانی و قرار مراحل فنولوزیک گیاه با عوامل محسوب می‌تواند مؤثر بر آن باشد. بنابراین با طبیعت که موجز تولید عملاکدای بیالا را فراهم می‌آورد، با تأخیر در کاشت کاشت و تغذیه، تعداد غوره رسیده، ولی هزار دانه کاهش و ریزش گل افزایش می‌یابد، قادی و نیازی (۲۰۰۶) با بررسی تاثیر کاشت بر کیفیت الاف و درصد روغن بذر سه رقم پنبه در منطقه گرگان مشخص کردند که با تأخیر در کاشت درصد روغن بذر در کلیه ارقام کاهش می‌یابد. ادامسون (۲۰۰۵) عنوان کرد که تاریخ کاشت بر عملاکد و فنولوزیک گیاه تغییرات سیاسی مشخصی اعمال می‌کند. با این صورت که با تأخیر در کاشت عملاکرد به بهبود و همچنین عملاکرد پنبه دانه کاهش یافته و مرحله گل دهی گیاه بیشتر از سایر مراحل تحت تاثیر تاریخ کاشت قرار گرفته و ریزش گل‌ها افزایش می‌یابد. در چنین شرایطی توجه به بهبود عوامل همچون مدیریت زراعی، ویژگی‌های فنولوزیک، مورفولوژیک و فیزیولوژیک گیاه بسیار حائز اهمیت بوده زیرا که بر اهداف به‌ویژه مشخصی اعمال می‌کند.

از طرف دیگر است که با تأخیر در کاشت عملاکرد به بهبود و همچنین عملاکرد پنبه دانه کاهش یافته و مرحله گل دهی گیاه بیشتر از سایر مراحل تحت تاثیر تاریخ کاشت قرار گرفته و ریزش گل‌ها افزایش می‌یابد. در چنین شرایطی توجه به بهبود عوامل همچون مدیریت زراعی، ویژگی‌های فنولوزیک، مورفولوژیک و فیزیولوژیک گیاه بسیار حائز اهمیت بوده زیرا که بر اهداف به‌ویژه مشخصی اعمال می‌کند.

مواد و روش‌ها

تحقیق حاضر به صورت آزمایش مزرعه‌ای در سال زراعی ۱۳۹۵ در ایستگاه تحقیقات پنجه هاشمی وابسته بوده‌است که مربوط به پرورش گیاه، ۵۴ درجه و ۱۶ دقیقه شمالی، عرض ۴۲ درجه و ۵۱ دقیقه شرقی و ارتفاع ۱۲ متر از سطح درا انجام شد. متوسط بلندی مدت پرورش سالانه در این منطقه بین‌محدودیت dummy دها به ترتیب ۱۲ و ۲۴ درجه سانتی‌گراد می‌باشد.

به منظور بررسی خصوصیات فیزیکی و شیمیایی خاک مزرعه آزمایش بر یک میلیون فرد کشت که در اقدام به نمونه‌برداری از اعماق ۳۰۰ و ۶۰ سانتی‌متری گردید. نمونه‌ها از چندین نقطه مزرعه
جمع آوری و با کدگیر بر اساس عمق نمونه‌برداری مخلوط شدند و نمونه‌ای مرکب به آزمایشگاه ارسال شد. بر اساس نتایج تجزیه خاک، بافت خاک مزرعه آزمایشی مورد نظر لومی رسي سیلیتنی بود. سایر خصوصیات خاک مزرعه مورد آزمایش در جدول 1 آرائه شده است. نیم‌های آزمایش شامل دارای کاست (8 تیرماه و 21 تیرماه) به عنوان فاکتور اصلی و ترکیب فاکتوری رقم (الطیف و گلستان) به عنوان فاکتور اصلی، فاکتور قربانی و کود نیتروزین (شامل سه سطح: مطلوب، پک سوم حدا مطلوب و بدون کود) فاکتور قربانی بودند. سطوح گردن در حالت مطلوب حدود ۱۶۰ کیلوگرم در هکتار، و در حالت پک سوم حدود ۵۵ کیلوگرم در هکتار بود.

جدول ۱- خصوصیات فیزیکی و شیمیایی خاک مزرعه

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>عمق (متر)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-10</td>
<td>10-20</td>
<td>20-30</td>
<td>30-40</td>
<td>40-50</td>
<td>50-60</td>
</tr>
<tr>
<td>0.18</td>
<td>0.26</td>
<td>0.34</td>
<td>0.42</td>
<td>0.14</td>
<td>0.06</td>
</tr>
</tbody>
</table>

به منظور اجرای طرح، عملیات ادامه‌سازی زمین در نیمه دوم خردادماه صورت گرفت. بدین منظور پس از عملیات سبک‌کردن که جهت تصفیه خاک و خوردن کردن پیمان غنی‌محصول قبل انجام پذیرفت با استفاده از فاکتور اقیان سه احداث جوی و پشتگردید. هر واحد آزمایشی دارای ۶ ریف کاشت به طول ۶ متر با فاصله بین ردیف ۶ سانتی‌متر بود که با اعمال فصله ۱۰ سانتی‌متر ریو رده و عمق کاشت ۵ سانتی‌متر، تراکم بونه در آزمایش ۶ بونه در متر مربع در نظر گرفته شد.

با توجه به نتیجه آزمون خاک و مقدار نیتروژن مورد نیاز پنبه، در ابتدای آزمایش نیم‌ی از کود نیتروزین (آور) به همراه ۵۰ کیلوگرم در هکتار کود فسفات (سروب فسفات تری‌بل) مصرف گردید. نیمه دیگر کود نیتروزین در شروع گلدهی و پراساس مقدار تیماره‌ای کودی آزمایش به صورت سرد به زمین داده شد. مقدار مصرف کود نیتروزین در مرحله قبل از کاشت و مرحله گلدهی بر اساس مقددر
تیمارهای کوئی آزمایش اختصاص یافته. قبل از کاشت بذر، برای حصول بیشینه سطح سبز مزرعه
آبیاری گرددی و عملیات کاشت در دو تاریخ کاشت، نیمه اول تیرماه (8 تیر) و نیمه دوم تیرماه (21
تیر) به‌صورت دستی روش پیچی‌گذاری گندم کاشت قبیل انجام شد و بلافاصله پس از اتمام عملیات کاشت
مزروعه آبیاری گرددی (خاک آب) به منظور جلوگیری از وقوع شکاف خشکی بر گیاهان و ایجاد شرایط
پتانسیل برای رشد، در طی دوره رشد سه بار مزرعه آبیاری گرددی که میزان مکمل آن بارش فراوانی
بود که در طی دوره رشد گیاه صورت پذیرفت.

از ابتدای آزمایش تعداد 40 بوته پیش از دو رفیق میانی هر واحد به منظور ثبت مراحل فنولوزیک
علائم گزارش کرده و هر بار در هفت مورد ارزیابی قرار گرفتند. معیار ورود بوته‌ها به مرحله
فنولوزیک ورود نیمه از بوته‌های علامت‌گذاری شده در هر واحد آزمایشی به مرحله فنولوزیک مورد
نظر بوده است. همچنین معیار رسیدن به مرحله بلغ فیزیولوژیک و در نتیجه برداشت نهایی باز
صدح غیور و طلاپی رنگ شدن بوته‌های مورد نظر بود. بنابراین در صورتی که بیش از 50 درصد از
بوت‌های علامت‌گذاری شده در صورتی که بین رنگ و رنگ غیور و در نتیجه یافتن رنگ غیور، فیزیولوژیک
تمامی بوته‌های دو رفیق میانی هر واحد آزمایشی (بسیار یافتن آب و اثر حاشیه) به منظور اندازه‌گیری
عملکرد و اجزاء عملکرد کفپر و آب از آزمایشگاه نقطه‌شدن.

به منظور استحکام به وزن خشک اندازه‌های مختلف بوته‌ها به تفکیک اندازه حداکثر به‌مدت 48 ساعت
در اون با دمای 25 درجه سانتی‌گراد قرار داده شدند و پس از اطمینان از تغییر وزن آنها با ترازو
اندازه‌گیری شدند. در نهایت در ارگرام مورد هدف به منظور اندازه‌گیری عملکرد و اجزاء عملکرد عملکرد
وش، عملکرد دانه، عملکرد ساق، عملکرد قوریک و وزن خشک مرکزی از اندازه‌های گیاهی (برگ،
ساقه و غیور) و تعداد گیاه در حرکت مربع اندازه‌گیری شدند.

بعد از جمع‌آوری داده‌ها و ثبت در نرم‌افزار اکسل 3 تحلیل تجزیه‌های آماری مورد نیاز با استفاده از
نرم‌افزار آماری SAS Institute, 2008 (SAS Institute, 2008). SAS, Univariate, در نرم‌افزار
تجربه واریانس، از نرم‌افزار ساخته شده با استفاده از نرم‌افزار Univariate SAS
در موارد معمولی که هرگونه این شرایط را دارا گزارش می‌باشد در نتیجه می‌باشد در نتیجه
توییب خطای استفاده به‌عمل آمد. مقایسه میانگین داده‌ها نیز بر اساس آزمون LSD
درصد صورت گرفت.

1- Excel
نتایج و بحث

تجزیه و ارایس داده‌های آزمایش نشان داد که در مجموع در اکثر صفات فیزیولوژیک و عملکردی مورد مطالعه یافته‌های مقابل‌کاری‌های کاسن در رقم در غالب صفات مورد تجزیه و مراعت شده است (جدول ۲ و ۳). این بدان مطابق است که اکتا به انرژی اصلی کاسن و رقم صحیح نیرو و لازم است مقابله می‌کنند برای اثر مقابل‌کاری زدن شو. همچنین براساس جدول ۳ در اسب‌ها با صفات رشدی یا عملکردی پنیر اثر مقابل‌کاری دوپامین کاسن در رقم معنی دار یافته می‌باشد. مقایسه میانگین سطوح نتیجگیری که بر اساس اثری این فاکتور سرم گرفته که درگیری‌دانه پاسخ جامع این فاکتور به سطوح فاکتورهای تاریخ کاشت در رقم نیز بود.

عملکرد و افزایش

رقم گلستان با ۳۸۶ کیلوگرم در هکتار و رقم لطیف با ۳۴۸۵ کیلوگرم در هکتار در تاریخ کاشت اول بیشترین عملکرد و شا را داشتند (جدول ۲). رقم لطیف در تاریخ کاشت دوم نیز از کمترین عملکرد ورش ۲۰۱۱ کیلوگرم در هکتار (جدول ۲) بیش‌ترین انرژی کاشت به عملکرد ورش تأثیر بسیاری دارد و با تأثیر در تاریخ کاشت عملکرد ورش کاهش می‌یابد. تاریخ نشان داد سطح کودی صفر از بیشترین عملکرد ورش (۴۴۷۲ کیلوگرم در هکتار) بیش‌ترین انرژی کاشت به ۱۶۰ کیلوگرم در هکتار عملکرد (۱۶۵۹ کیلوگرم در هکتار) کاهش یافته (جدول ۴).

معصومی خیابی (۲۰۱۰) نیز اشاره کرده که با تأثیر در کاست خسارت ناشی از شته و ترپیس افزایش یافته و سبب کاهش عملکرد می‌شود. وارد و فلیس (۲۰۰۸) به این نتیجه رسیدند که در کاست دی‌هی‌کیمی به‌دلیل کاهش گل‌دهی عملکرد کاشت می‌یابد. ولیم (۲۰۰۲) نشان داد که در کاست به مکانیزم به‌دلیل ورودارای از آب و هواه مناسب و برخورداری از سطح نشیب‌های و با استفاده مناسب از نور، عملکرد نسبت به کاست دی‌هی‌کیمی افزایش می‌یابد. یوکت (۲۰۰۹) اعلام کرد که به عنوان یک تأثیر در تاریخ کاشت پنه به دلیل ریشگزاری کاهش عملکرد کاشت می‌یابد.

عملکرد پنIBE و افزایش: نتایج نشان داد اثر اصلی و دو جانبه فاکتورهای تاریخ کاشت و سطح مختلف کود نیتروزینی در اکثر صفات عملکرد و اجزای عملکرد ارقام پنIBE و لطیف در سطح احتمال پنج درصد معنی‌دار بود (جدول ۲). نتایج حاصل از مقایسه میانگین داده‌ها نشان داد که در تاریخ کاشت اول ۸ تیم‌های و سطح کودی معنی‌دار (۱۶۰ کیلوگرم در هکتار) ارقام از عملکرد پنIBE دانه و الیاف بالایی برخوردار بودند (جدول ۲).
<table>
<thead>
<tr>
<th>رقم</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>الاسم</th>
<th>الوحدة</th>
<th>القيمة</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن الحشكة</td>
<td>كجم</td>
<td>1.5</td>
</tr>
<tr>
<td>عمر المعدن</td>
<td>سنة</td>
<td>10</td>
</tr>
<tr>
<td>مدة العمل</td>
<td>ساعة</td>
<td>8</td>
</tr>
<tr>
<td>كثافة المعدن</td>
<td>كجم/السنتيمتر مكعب</td>
<td>4.5</td>
</tr>
</tbody>
</table>

ملاحظة:
- **المصطلحات:**
 - **وزن الحشكة:** وزن الحشكة التي تم الحفر بها.
 - **عمر المعدن:** العدد السنوي الذي سمي به المعدن.
 - **مدة العمل:** عدد الساعات التي تم فيها العمل.
 - **كثافة المعدن:** كثافة المعدن الموزع في المعدن.

المصطلحات:
- **وزن الحشكة:** وزن الحشكة التي تم الحفر بها.
- **عمر المعدن:** العدد السنوي الذي سمي به المعدن.
- **مدة العمل:** عدد الساعات التي تم فيها العمل.
- **كثافة المعدن:** كثافة المعدن الموزع في المعدن.
جدول 3: مقايسه ميانيين اثر تاريخ كاشت بر عاملدرو اجراء عاملدرو ارقام پنجه

تاريخ كاشت	رقم	زن حضک برگ	زن حضک سکه	زن حضک فوره	مجموع زن حضک	جنح دوم (بیکلومدر هکار)	جنح نیمه (بیکلومدر هکار)	جنح سیف (بیکلومدر هکار)	چندر دنی	چندر دنی (بیکلومدر هکار)				
8	753	324	21	324	3246	12382	21308	21308	1324	1324	1324	1324	1324	1324
8-3	753	21	324	324	3246	12382	21308	21308	1324	1324	1324	1324	1324	1324
1721	210	210	210	210	210	210	210	210	210	210	210	210	210	210

* مياگين: هاي داري حداقلچي ها حرف مشترك در هر سرون فاقد تفاوت معنی دار آماري در سطح .05 مي bliسد.

جدول 4: مقايسه ميانيين اثر سطح مختلف كودي بر عاملدرو اجراء عاملدرو پنجه

کودنوروزان	زن حضک بريک	زن حضک سلاه (بیکلومدر هکار)	زن حضک سلاه (بیکلومدر هکار)	مجموع زن حضک	جنح دوم (بیکلومدر هکار)	جنح نیمه (بیکلومدر هکار)	جنح سیف (بیکلومدر هکار)	
0	753	324	21	324	3246	12382	21308	21308
33	243	243	243	243	243	243	243	243
53	210	210	210	210	210	210	210	210
160	210	210	210	210	210	210	210	210

* ميانيين: هاي داري حداقلچي ها حرف مشترك در هر سرون فاقد تفاوت معنی دار آماري در سطح .05 مي bliسد.
در بین ارقام نیز رقم گلستان از عملکرد دانه و الایاف بالایی برخوردار بود بطوری که در تاریخ کاشت اول رقم گلستان با عملکرد بینه دانه ۲۵۳۲ کیلوگرم در هکتار و عملکرد الایاف ۱۳۹۶ کیلوگرم در هکتار برتر از رقم لطفی با عملکرد بینه دانه ۱۵۴۱ کیلوگرم در هکتار و عملکرد الایاف ۸۰۳ کیلوگرم در هکتار بود (جدول ۳). در تاریخ کاشت دوم نیز رقم گلستان عملکرد بینه دانه و عملکرد الایاف (به ترتیب) ۵۱۹ و ۲۱۵ کیلوگرم در هکتار) بیشتری نسبت به رقم لطفی (به ترتیب) ۳۸۰ و ۲۲۱ کیلوگرم در هکتار) داشت (جدول ۳). بیشترین عملکرد ون با ۲۴۴۷ کیلوگرم در هکتار در تیمار بدون کود نیترزون مشاهده شد که اختلاف آن با تیمارهای ۵۳ و ۱۶۰ کیلوگرم در هکتار کود نیترزون به ترتیب با عملکرد ۱۷۶۹ و ۱۷۵۹ کیلوگرم در هکنار ممکن بود اما بین این دو تیمار اختلاف معنی‌دار از نظر عملکرد کل وجود نداشت (جدول ۴). نتایج بدست آمده با تناوب دریافت محققین هم‌خوانی داشت (محمد و همکاران ۲۰۰۵).

بیشترین نیز افزایش سطح کودی شاهد (۷۸۲ کیلوگرم در هکتار) مشاهده شد که با افزایش سطح کودی از صفر به ۱۶۰ کیلوگرم در هکتار عملکرد کاهش یافته. دلیل این امر را می‌توان اثر نوع نیترزون در افزایش رشد روشی و تأخیر از ادامه در هکتارها تاکید کرد. مطالعات نکش داد که برای پنبه همانند اگر گیاهان زراعی تعابیه کودی مناسب به این نکش داده شده‌ایند که مصرف کمتر از مقدار نیترزون کاهش محصول را به دنبال خواهد داشت. کودهای زیاد حاکی این عملکرد ممکن است که ناشی از مقدار کافی نیترزون و عملکرد بالا تولید شده داشته باشد. نیز می‌گفتند یکی از عوامل افزایش نیترزون این عنصر در خاک و جذب زیادی آن به وسیله گیاه‌ها افزایش رشد روشی و بررسی محصول این است. افزایش رشد روشی یکی از اثرات نیترزون معاشته شده، در نتیجه آن اختصاص ماده خشک بین اندازه‌های روشی و روشی گیاه با اختلاف مواجه شده و شروع مرحله زیانی و تولید اندام‌های بارور آن با تناوب مواجه می‌شود (مک کویل و همکاران ۲۰۰۰).
وزن خشک اندازه‌ای مختلف: تاثیر رقم و تاریخ کاشت بر وزن خشک اندازه‌ای مختلف (برگ، ساقه و غیره) می‌تواند در جدول (3) و (4) مشاهده شود. برخی از این رقم‌ها، به صورت 14/0/15/0/2007، 15/0/2008، 16/0/2009 و 17/0/2010 ثبت شده‌اند. با استفاده از روش‌های مختلف، اندازه‌گیری وزن‌های مختلف برای اندازه‌گیری وزن خشک اندازه‌ای مختلف انجام شده است. روش بسیاری از این روش‌ها در جدول (5) ذکر شده‌اند. به هر حال، باید توجه داشت که این رقم‌ها به‌طور کلی در سطح اختلاف معنی‌داری داشته و به‌طور کلی در جدول (2) و (3) برای اندازه‌گیری وزن خشک اندازه‌ای مختلف ارائه شده‌اند.
صفات فنولولیک

نتایج نشان داد اثر فاکتورهای تاریخ کاشت و کود نتیجه‌گیری کرده و اثرات متعدد بر صفات فنولولیک ارقام گلستان و یک پنج در اعمال صلیبی دارoad (جدول 5). به‌طورکلی رقم لطفی مراحال اول رشته تا گلدهی (ظاهر شاخه‌های روشی و زایشی، مناسبی) و در ارقام گلستان طی کرده و اول رشته‌های چهار بعد از مرحله گلدهی رقم گلستان تشکیل و گریدگی و بنا شدن گرده شبیه‌تر بود (جدول 4). ارقام لطفی و گلستان در تاریخ کاشت اول روز دوم از تاریخ کاشت دوم وارد مرحله رسیدگی ویژوالیک شدند (جدول 6). در تاریخ کاشت اول رقم لطفی و گلستان به ترتیب 118 و 126 روز پس از کاشت وارد مرحله رسیدگی ویژوالیک شدند در حالی که ارقام لنین در تاریخ کاشت دوم ۱۴۷ و 1۴۱ روز پس از کاشت وارد مرحله رسیدگی ویژوالیک شدند (جدول 6). به احتمال زیاد بی‌کی از ضایعات عمیکردو یک‌پایی از ارقام در تاریخ کاشت اول زودرسی ارقام داد (جدول 3). لازم به ذکر است که رقم لطفی سایر مرحله‌ها رشته‌ر از سایر ارقام سپری کرد فقط که بی‌توضیح پس از ۱۲۵،۷۳۵ و ۶۹۵ روز پس از کاشت حدود ۵۰ درصد از شاخه‌های روشی، شاخه‌های زایشی، مناسبی، گلدهی و گرده‌های آن ظهور یافت (جدول 6).

جدول 5: تجزیه واریانس آناتومی، تاریخ کاشت و سطوح مختلف کودی بر صفات فنولولیک پنجه

<table>
<thead>
<tr>
<th>میانگین مربوط به</th>
<th>تاریخ کاشت</th>
<th>رقم</th>
<th>کود نتیجه‌گیری</th>
<th>شاخه سازی</th>
<th>رشته تا گلدهی</th>
<th>ظاهر شاخه‌های روشی</th>
<th>زایشی</th>
<th>مناسبی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/24</td>
<td>1/14</td>
<td>1/14</td>
<td>1/14</td>
<td>1/14</td>
<td>1/14</td>
<td>1/14</td>
<td>1/14</td>
<td>1/14</td>
</tr>
<tr>
<td>نتایج</td>
<td>10/۱۳۵</td>
<td>10/۱۳۵</td>
<td>10/۱۳۵</td>
<td>10/۱۳۵</td>
<td>10/۱۳۵</td>
<td>10/۱۳۵</td>
<td>10/۱۳۵</td>
<td>10/۱۳۵</td>
</tr>
<tr>
<td>تاریخ کاشت</td>
<td>1/177</td>
<td>1/177</td>
<td>1/177</td>
<td>1/177</td>
<td>1/177</td>
<td>1/177</td>
<td>1/177</td>
<td>1/177</td>
</tr>
<tr>
<td>نقطه کار</td>
<td>1/184/5۵۰</td>
<td>1/184/5۵۰</td>
<td>1/184/5۵۰</td>
<td>1/184/5۵۰</td>
<td>1/184/5۵۰</td>
<td>1/184/5۵۰</td>
<td>1/184/5۵۰</td>
<td>1/184/5۵۰</td>
</tr>
<tr>
<td>خطای اول</td>
<td>1/199</td>
<td>1/199</td>
<td>1/199</td>
<td>1/199</td>
<td>1/199</td>
<td>1/199</td>
<td>1/199</td>
<td>1/199</td>
</tr>
<tr>
<td>رقم</td>
<td>1/25۰/۵۵۰</td>
<td>1/25۰/۵۵۰</td>
<td>1/25۰/۵۵۰</td>
<td>1/25۰/۵۵۰</td>
<td>1/25۰/۵۵۰</td>
<td>1/25۰/۵۵۰</td>
<td>1/25۰/۵۵۰</td>
<td>1/25۰/۵۵۰</td>
</tr>
<tr>
<td>کود نتیجه‌گیری</td>
<td>1/3۷۷</td>
<td>1/3۷۷</td>
<td>1/3۷۷</td>
<td>1/3۷۷</td>
<td>1/3۷۷</td>
<td>1/3۷۷</td>
<td>1/3۷۷</td>
<td>1/3۷۷</td>
</tr>
<tr>
<td>رقم</td>
<td>1/4۹۰۰</td>
<td>1/4۹۰۰</td>
<td>1/4۹۰۰</td>
<td>1/4۹۰۰</td>
<td>1/4۹۰۰</td>
<td>1/4۹۰۰</td>
<td>1/4۹۰۰</td>
<td>1/4۹۰۰</td>
</tr>
<tr>
<td>رقم</td>
<td>1/5۳۷۷۰</td>
<td>1/5۳۷۷۰</td>
<td>1/5۳۷۷۰</td>
<td>1/5۳۷۷۰</td>
<td>1/5۳۷۷۰</td>
<td>1/5۳۷۷۰</td>
<td>1/5۳۷۷۰</td>
<td>1/5۳۷۷۰</td>
</tr>
<tr>
<td>نقطه کار</td>
<td>1/5۹۴۶۰</td>
<td>1/5۹۴۶۰</td>
<td>1/5۹۴۶۰</td>
<td>1/5۹۴۶۰</td>
<td>1/5۹۴۶۰</td>
<td>1/5۹۴۶۰</td>
<td>1/5۹۴۶۰</td>
<td>1/5۹۴۶۰</td>
</tr>
<tr>
<td>نقطه کار</td>
<td>1/7۳۴۶۰</td>
<td>1/7۳۴۶۰</td>
<td>1/7۳۴۶۰</td>
<td>1/7۳۴۶۰</td>
<td>1/7۳۴۶۰</td>
<td>1/7۳۴۶۰</td>
<td>1/7۳۴۶۰</td>
<td>1/7۳۴۶۰</td>
</tr>
<tr>
<td>نقطه کار</td>
<td>1/8۴۷۰۰</td>
<td>1/8۴۷۰۰</td>
<td>1/8۴۷۰۰</td>
<td>1/8۴۷۰۰</td>
<td>1/8۴۷۰۰</td>
<td>1/8۴۷۰۰</td>
<td>1/8۴۷۰۰</td>
<td>1/8۴۷۰۰</td>
</tr>
<tr>
<td>خطای اول</td>
<td>1/۱۲۹۱</td>
<td>1/۱۲۹۱</td>
<td>1/۱۲۹۱</td>
<td>1/۱۲۹۱</td>
<td>1/۱۲۹۱</td>
<td>1/۱۲۹۱</td>
<td>1/۱۲۹۱</td>
<td>1/۱۲۹۱</td>
</tr>
<tr>
<td>نقطه کار</td>
<td>1/۱۴۹۵</td>
<td>1/۱۴۹۵</td>
<td>1/۱۴۹۵</td>
<td>1/۱۴۹۵</td>
<td>1/۱۴۹۵</td>
<td>1/۱۴۹۵</td>
<td>1/۱۴۹۵</td>
<td>1/۱۴۹۵</td>
</tr>
<tr>
<td>نقطه کار</td>
<td>1/۱۶۷۶</td>
<td>1/۱۶۷۶</td>
<td>1/۱۶۷۶</td>
<td>1/۱۶۷۶</td>
<td>1/۱۶۷۶</td>
<td>1/۱۶۷۶</td>
<td>1/۱۶۷۶</td>
<td>1/۱۶۷۶</td>
</tr>
</tbody>
</table>
نتایج بدست آمده با تحقیقات بینهایت محترفان مطرح دارد. آدمآیدون (2005) عنوان کرد که تاریخ کاستن بر روی عملکرد و فنولوزی گیاه تغییرات سیستمی مشخصی اعمال می‌کند. به این صورت که با تأخیر در کاست عملکرد به‌طور میانگین عملکرد بینه دانه کاهش یافته و مرحله گل‌دهی گیاه بیشتر از سابع مرحله تحت تأثیر قرار گرفته و رشد گل‌ها افزایش می‌یابد.

جدول ۶ مقایسه میانگین اثر تاریخ کاست بر صفات فنولوزی (روز پس از کاشت) ارقام پنجه

<table>
<thead>
<tr>
<th>تاریخ کاشت</th>
<th>کریم</th>
<th>گلستان</th>
<th>گلستان</th>
<th>گلستان</th>
<th>گلستان</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۸ تیر</td>
<td>۲۷</td>
<td>۲۴</td>
<td>۲۱</td>
<td>۲۹</td>
<td>۲۹</td>
</tr>
<tr>
<td>۱۹ تیر</td>
<td>۲۴</td>
<td>۲۱</td>
<td>۲۱</td>
<td>۲۹</td>
<td>۲۹</td>
</tr>
<tr>
<td>۲۰ تیر</td>
<td>۲۱</td>
<td>۲۱</td>
<td>۲۱</td>
<td>۲۹</td>
<td>۲۹</td>
</tr>
<tr>
<td>۲۱ تیر</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۲۹</td>
<td>۲۹</td>
</tr>
</tbody>
</table>

میانگین‌های دارای حداقل یک حرف مشترک در هر ستون صفر می‌باشد.

جدول ۷ مقایسه میانگین اثر سطوح مختلف کود نیتروژن بر صفات فنولوزی (روز پس از کاشت) ارقام پنجه

<table>
<thead>
<tr>
<th>سطح غنیم</th>
<th>کریم</th>
<th>گلستان</th>
<th>گلستان</th>
<th>گلستان</th>
<th>گلستان</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳/۸۵</td>
<td>۲۴</td>
<td>۲۱</td>
<td>۲۱</td>
<td>۲۹</td>
<td>۲۹</td>
</tr>
<tr>
<td>۵/۸۵</td>
<td>۲۱</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۲۹</td>
<td>۲۹</td>
</tr>
<tr>
<td>۷/۸۵</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۲۹</td>
<td>۲۹</td>
</tr>
<tr>
<td>۹/۸۵</td>
<td>۱۷</td>
<td>۱۷</td>
<td>۱۷</td>
<td>۲۹</td>
<td>۲۹</td>
</tr>
</tbody>
</table>

میانگین‌های دارای حداقل یک حرف مشترک در هر ستون صفر می‌باشد.

نتیجه‌گیری کلی

نتایج نشان داد اثر تاریخ کاشت سطوح مختلف کود نیتروژنی و اجرای عملکرد از تاریخ تولید و گلستان معنی‌دار (P<0.05) بود. به‌طور کلی اثرات گلستان در این سطح مطالعه مشخص کثافت و کریم اثر عمیق‌تری از تاریخ کاشت داشتند. از نظر کثافت کریم عملکرد یافته‌های تولید کود و گلستان معنی‌دار بود و با افزایش سری‌کردن وارد مرحله رشد سری‌کردن فیتولوزی کد بلند و داشتن و تعداد غنیم در متر مربع نیز در سطح کودی شاهد مشاهده شد که با افزایش سطح کودی از صفر به ۱۶۰ کیلوگرم در هکتار کاهش یافته که دلیل این امر از کود نیتروژنی رشد روشی ارقام پنجه را تأثیر می‌گذارد.