مدیریت تغذیه میگو و اثر آن بر کیفیت آب مزارع پرورش

عليضا قاضی
aliangler@gmail.com

مرکز تحقیقات زنبیلی و اصلاح زرگردهای سردآبی، موسسه تحقیقات علمی شیلاتی کشور، آموزش و تربیت کشاورزی، پاسوج، ایران.

چکیده
تأکید بر استانداردهای کیفیت آب در صنعت پرورش میگو، در قبال با سایر گونه‌ها، پرورش‌یابی بیشتر است. همگرا بدن تغییرات آب سیار حساسیت و اولاً توجه ویژه‌ای به این موضوع باید صورت پذیرد. پژوهش‌های عمده‌ی بیان تغییرات در کیفیت آب در مزارع میگو در کجا و به چه صورت روزانه با میگو داده می‌شود. خواص نش معمول در آب پرورش دارد. استفاده از آب‌های فرآور نشده یا غیرنفوذ میزبان نیازهای غذایی گونه هدف میزان رشد و سلامت آبی مورد نظر را تسریع می‌کند. خوارج که فیبرهای قیمت‌برداری یافته به خش خوارج پرورشی است که خود منعی‌گنی در انتزاع است. حجم بالاتری از مواد غذایی مانند نترپوزی و فسفر از طریق خوارج وارد مزارع پرورش میگو می‌شود. این مقاومی تجویز‌های مدیریت تغذیه میگو و راهکارهایی لازم برای کاهش حداکثر اثرات منفی خوراک بر کیفیت آب استخرهای مزارع پرورش میگو ارائه می‌گردد.

کلمات کلیدی: میگو، کیفیت آب، مدیریت تغذیه، جهش های غذایی

مقدمه
در حال حاضر صنعت آبی پرویزی سربین‌رین رشد را در بخش تولید غذا ناشته و در طی پنجه سال گذشته تولید آن از 1 میلیون تن در سال به بیش از هفه میلیون تن در سال رشد یافت (FAO، 2016). تولید و تجارت میگو سه‌مرحله‌ای می‌باشد که شامل برداشت غذایی پروپتیتی است که منعی در آب شیرین می‌رود. افزوده در دقت تولید و در بخش نقش پر رگه‌ای در توسه اقتصادی کشورهای

خراب‌شک معمول در آبی پرویزی
در دست‌یابی استفاده از خوارج فرآور
شده‌ای اختصاصی
برای تامین
مزایا غذایی
گونه هدف، میزان
رشد و سلامت
آبی مورد نظر را
تسریع می‌کند.
ضرب تبدیل آکراتی غذایی

ضریب تبدیل غذایی به میزان تبدیل غذایی داده شده به توده زدن اطلاق می‌گردد. به‌پایان دیگر، این میزان کارایی آبزی در تبدیل خوراک به توده زدن را نشان می‌دهد. غذایی محاسبه‌ای بروزکردن تقسیم خوراک مصرفی بر میزان تولید خالص کوسته است.

به‌عنوان مثال، اگر ۲۵۰ کیلوگرم میگو وارد ذخیره‌سازی شود و ۲۰۰۰ کیلوگرم غذا در طول ۶ ماه به آنها داده شود میزان ۱۸۰۰ کیلوگرم میگو سرد، ضریب تبدیل به شکل محاسبه می‌گردد.

میزان افزایش وزن میگو + میزان غذای مصرفی در طول دوره پرورش = ضریب تبدیل غذایی

۲۰۰۰ + ۲۰۰۰۰۰۰ = ۲۰۲۰۰۰۰

بدین معنا که حدوداً ۲۸۸ کیلوگرم خوراک برای تولید یک کیلوگرم میگو نیاز باید. از ضریب کارایی غذا نیز استفاده می‌شود. نحوه محاسبه ضریب کارایی غذایی بر اساس ضریب تبدیل غذایی است و به معنی میزان میگو تولیدی به ازای هر کیلوگرم غذا است.

به‌عنوان مثال، اگر ضریب کارایی غذایی ۰/۵ باشد، برای ۱ کیلوگرم خوراک، تولید ۰/۵ کیلوگرم میگو نیاز است (al., 1984).

ضریب تبدیل خوراک کوچکتر و عدد ضریب کارایی خوراک بزرگتر نشان از مصرف حداق خوراک برای تولید حداکثر میگو است.

به‌عنوان مثال، اگر ۱ کاشه در ضریب تبدیل غذایی، سپس کاشه مصرف ۱۰۰ کیلوگرم خوراک برای تولید یک برخی از آنها می‌گردد. این به عنین حفظ منابع و کاشت بهره‌نژدی تولید و کاشت ورودی دفعی در منابع آب یا حوضه‌های بی‌پرورشی می‌گردد.

ضریب خوراک

تعداد مصرفی خوراک ریخته شده در آب توسط آب‌زی

ضریب تبدیل غذایی به معنی مصرفی مصرفی و اثر آن بر کیفیت آب مزارع پرورش می‌گردد. تعداد مصرفی خوراک به‌معنی مصرفی مورد نیاز آب‌زی بروزتین سپاس مهم و گران است و منبع تهیه آن از گذشته بوده ماهی بوده است.

ضریب گیاه‌خواری

ضریب اثر گیاه‌خواری را کاهش می‌دهد.

ضریب گیاه‌خواری به معنی مصرفی مصرفی است تا مصرفی مصرفی گیاه را کاهش می‌دهد.

ضریب گیاه‌خواری به معنی مصرفی مصرفی است تا مصرفی مصرفی گیاه را کاهش می‌دهد.

ضریب گیاه‌خواری به معنی مصرفی مصرفی است تا مصرفی مصرفی گیاه را کاهش می‌دهد.

ضریب گیاه‌خواری به معنی مصرفی مصرفی است تا مصرفی مصرفی گیاه را کاهش می‌دهد.

ضریب گیاه‌خواری به معنی مصرفی مصرفی است تا مصرفی مصرفی گیاه را کاهش می‌دهد.

ضریب گیاه‌خواری به معنی مصرفی مصرفی است تا مصرفی مصرفی گیاه را کاهش می‌دهد.

ضریب گیاه‌خواری به معنی مصرفی مصرفی است تا مصرفی مصرفی گیاه را کاهش می‌دهد.

ضریب گیاه‌خواری به معنی مصرفی مصرفی است تا مصرفی مصرفی گیاه را کاهش می‌دهد.
کیفیت خوراک به معنای چیست؟

مدیریت غذا و غذاهای در برپورش میگو

استفاده از خوراک با کیفیت و مدیریت غذاهای صحیح سبب بهبود ضریب کارایی غذاگذاری و افزایش تولید سلامت و دردناک کیفیت آب را تضمین می‌کند. کیفیت خوراک به معانی جذب حداکثری مجدد می‌ماند و باعث پاتوز و ارزیابی موجود در آن می‌باشد.

این اتفاق وقیح را می‌دهد که مجدد مثلی مواد با کیفیت استفاده در تولید خوراک استفاده شود. استفاده از مواد اولیه با کیفیت در کنار روش‌های تولید و ساخت خوراک می‌گو، سبب کاهش ضایعات خوراک و مجدد دفعی از میگو می‌گردد. خوراک با کیفیت پایین سبب افزایش ضایعات خوراک و برای کیفیت آب استخوانی می‌بخشد برای استفاده در کیفیت شرکت (Robertson et al., 1993).

مواد اولیه به عنوان پذیرنده اندک آنها و از مواد دفع کردهایی نیترژن و فسفر به محیط بدن و موارد آن کاهش رشد از عوارض عمده توجه به کیفیت خوراک در صنعت پرورش میگو می‌باشد. در مدیریت تغذیه توجه به موارد زیر ضروری است (Velasco et al., 1999):

- غذا اولیه و هیچ‌گونه الیاف غذا در برپورش می‌گو
- میگو است
- همیشه معنی است که کیفیت آب
- از سه‌گونه اولیه با کیفیت است
- به‌طور است
- الگوی دادهی میگو با انتزاع و اعمال مناسب در تولید خوراک استفاده شود.

امکان زیادی دارد

مشاهده و نتیجه‌های تغذیه‌ای میگو

ثبت و قابل و رخداده برای برنامه‌ریزی دوره‌های میگو، کاربرد خوراک با آرزوهای غذایی مناسب (2005-200) 35-40 درصد پروتئین، 10 درصد چربی، 25 درصد و C با هدف آزمایش‌های و یونامین A افزایش توان سیستم ایمنی میگو و یونامین ها در دما و رطوبت بالا توجه به نیمین عمر کنونی میگو و یونامین ها در شرایط گرم و مرطوب (حاکمیت 2 ماه)

انتخاب خوراک با زمان ماندنگاری و استقامت با آب

این‌که خوراک در پهنای کنک و نخک

وفرآور و افزایش تولیدات طبیعی

استخر

لیسه در جهت تسریع و تقویت جریه آت

در آب استخر

ذخیره‌سازی و راه‌سازی اصولی لازم می‌گو

استخر بر اساس بهتر کیفیت

چربی‌های ناتیب

به جبره‌های تجاری که در حالت حاضر در

بازت سرعت، جبره‌های ناتیب گویند.

ترکیب این جبره‌ها با میکرو‌های گسترشی و تاثیری، جلسه‌های گیاهی شامل فیبر و کلاژن، رغنا

فیبر، آرد، گندم. پودر اسکوپ، پودر کلسیتول، پروتئین (و غذای مهدی)

آمیانسپاس و محرک‌های رشد و تغذیه (Lazard, 2007) با جبره‌های روزانه تا نرخ نسبت تغذیه

می‌شوند. جبره‌های ناتیب بر أساس وزن بدن

یوسپیده شده و در بستر ذخیره‌های می‌گردد.

روشن شدن نیرو‌های نگهداری سفر به فرم نامحلول سفید را دارد (شکل 1) (Glibert, 1999).
تبخیر هواداره مورد نیاز است. سطح اکسیژن بطور جهانی و مصرف هویون
پایه به صورت هفتگی انداده گری می‌شود. سطح بالای امکان‌پذیری و تیره نشان دهنده شدت
تخلفی بیش از حد نیاز و یا کیفیت پایین
خوراک مصرفی و یا عدم تعادل بین دندان
بروتئین به انرژی قابل هضم در فرمولاسیون
جیره است.

فعارت متابع
1. Burford M. and Glibert P. 1999. Short-term nitrogen uptake and
regeneration in early and later growth
phase shrimp ponds. Aquaculture
2. Burford M.A. and Williams K.C.
2001. The fate of nitrogenous waste
from shrimp feeding. Aquaculture,
198, 79- 93.
3. Funge-Smith S.J. and Briggs M.R.
1998. Nutrient budgets in intensive
shrimp ponds: implications for
sustainability. Aquaculture, 164,
117- 133.
and water quality management. In:
NUTRITION, J. I. F. F. S. A. A.
(ed).
5. Robertson L. WRENCE, A.L.
and Castille F. 1993. Effect of
feeding frequency and feeding time
on growth of Peneaus vannamei
(Boone). Aquaculture Research,
24, 1- 6.
6. Timothy R. Yoshiaki M. and Carol
M. 1984. A manual of chemical and
biological methods for seawater
analysis. Pergamon Press. Inc, 395,
475- 490.
7. Velasco M. Lawrence A.L.
and Castille F.L. 1999. Effect of
variations in daily feeding frequency
and ration size on growth of shrimp,
Litopenaeus vannamei (Boone), in
zero-water exchange culture tanks.
Aquaculture, 179, 141- 148.